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Abstract: Autonomous vehicles are expected to play a key role in the future of urban transportation1

system, as they offer potential for additional safety, increased productivity, greater accessibility,2

better road efficiency, and positive impact to the environment. Research in autonomous systems3

has seen dramatic advances in recent years, due to the increases in available computing power and4

reduced cost in sensing and computing technologies, resulting in maturing technological readiness5

level of fully autonomous vehicles. The objective of this paper is to provide a general overview6

of the recent developments in the realm of autonomous vehicle software systems. Fundamental7

components of autonomous vehicle software are reviewed, and recent developments in each area8

are discussed.9
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1. Introduction12

Autonomous Vehicles (AVs) are widely anticipated to alleviate road congestion through higher13

throughput, improve road safety by eliminating human error, and free drivers from the burden14

of driving, allowing greater productivity and/or time for rest, along with myriad other foreseen15

benefits. The past three decades have seen steadily increasing research efforts in developing16

self-driving vehicle technology, in part fueled by advances in sensing and computing technologies17

which have resulted in reduced size and price of necessary hardware. Furthermore, the perceived18

societal benefits continue to grow in scale along with the rapid global increase of vehicle ownership.19

As of 2010, the number of vehicles in use in the world was estimated to be 1.015 billion [1], while20

the world population was estimated to be 6.916 billion [2]. This translates to one vehicle for every21

seven persons. The societal cost of traffic crashes in the United States was approximately 300 billion22

USD in 2009 [3]. The financial cost of congestion is continually increasing each year, with the cost23

estimate for United States reaching as high as 160 billion USD in 2014 [4]. The associated health cost24

of congestions in United States was estimated to be over 20 billion USD in 2010 from premature deaths25

resulting from pollution inhalation [5]. While it is uncertain just how much these ongoing costs can26

be reduced through autonomous vehicle deployment, attempting to curtail the massive scale of these27

numbers serves as great motivation for the research.28

A future with self-driving cars was first envisioned as early as 1918 [6], with the idea even29

broadcasted over television as early as 1958 [7]. By 1988, Carnegie Mellon’s NAVLAB vehicle30
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was being demonstrated to perform lane-following using camera images [8]. Development was31

accelerated when several research teams later developed more advanced driverless vehicles to32

traverse desert terrain in the 2004 and 2005 DARPA Grand Challenges [9], and then urban roads in33

the 2007 DARPA Urban Challenge (DUC) [10]. Research related to self-driving has since continued at34

a fast pace in academic settings, but furthermore is now receiving considerable attention in industry35

as well.36

As research in the field of autonomous vehicles has matured, a wide variety of impressive37

demonstrations have been made on full-scale vehicle platforms. Recent studies have also38

been conducted to model and anticipate the social impact of implementing autonomous39

Mobility-on-Demand (MoD) [11]. The case studies have shown that MoD system would make access40

to mobility more affordable and convenient compared to traditional mobility system characterized41

by extensive private vehicle ownership.42

Autonomous driving on urban roads has seen tremendous progress in recent years, with several43

commercial entities pushing the bounds alongside academia. Google has perhaps the most experience44

in the area, having tested its fleet of autonomous vehicles for more than 2 million miles, with45

expectation to soon launch a pilot MoD service project using 100 self-driving vehicles [12]. Tesla46

is early to market their work, having already provided an autopilot feature in their 2016 Model S47

cars [13]. Uber’s mobility service has grown to upset the taxi markets in numerous cities worldwide,48

and has furthermore recently indicated plans to eventually replace all their human driven fleet with49

self-driving cars [14], with their first self-driving vehicle pilot program already underway [15].50

There are several places where automated road shuttles are in commercial operations. Examples51

include deployments at Rivium Business Park, Masdar City, and Heathrow Airport [16,17]. The52

common feature of these operations is that road vehicles are certified as a rail system meaning53

that vehicles operate in a segregated space [17]. This approach has been necessary due to legal54

uncertainty around liability in the event of an accident involving an autonomous vehicle. To address55

this, governments around the world are reviewing and implementing new laws. Part of this process56

has involved extended public trials of automated shuttles, with CityMobil and CityMobil2 being57

among the largest of such projects [17].58

While the majority of the research contributions discussed in the remaining sections of this59

article are from academic institutions, it is worth noting that the industrial market interest is also60

largely responsible for research investigations into certification and validations processes, especially61

in regards to autonomous car manufacturability and services [18,19]. These topics are however left62

out of the scope of this survey paper.63

Driving in urban environments has been of great interest to researchers due in part to the high64

density of vehicles and various area-specific traffic rules that must be obeyed. The DARPA Urban65

Challenge[20], and more recently the V-Charge Project [21] catalyzed the launch of research efforts66

into autonomous driving on urban road for numerous organizations. Referring to Fig.1, the problem67

of urban driving is both interesting and difficult because it pushes the research direction to address68

both increased operating speeds of autonomous vehicles as well increased environmental complexity.69

The core competencies of an autonomous vehicle software system can be broadly categorized70

into three categories, namely perception, planning, and control, with the interactions between these71

competencies and the vehicle’s interactions with the environment depicted in Fig. 2. Also,72

Vehicle-to-Vehicle (V2V) communications can be leveraged to achieve further improvements in areas73

of perception and/or planning through vehicle cooperation.74

Perception refers to the ability of an autonomous system to collect information and extract75

relevant knowledge from the environment. Environmental perception refers to developing a contextual76

understanding of environment, such as where obstacles are located, detection of road signs/marking,77

and categorizing data by their semantic meaning. Localization refers to the ability of the robot to78

determine its position with respect to the environment.79
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Figure 2. A typical autonomous vehicle system overview, highlighting core competencies

Planning refers to the process of making purposeful decisions in order to achieve the robot’s80

higher order goals, typically to bring the vehicle from a start location to a goal location while avoiding81

obstacles and optimizing over designed heuristics.82

Finally, the control competency, refers to the robot’s ability to execute the planned actions that83

have been generated by the higher level processes.84

The main objective of this paper is to provide a general overview of the recent developments85

in the realms of autonomous vehicle software system. However, as there has been a massive86

surge in research interest in the field of autonomous system in recent years, this paper is by no87

means a complete survey of the currently available hardware and software systems in the literature.88

The remainder of this paper is organized as follows: In Section 2, the topics of environmental89

perception and localization are discussed. Section 2.1 focuses on recent advances in LIDAR and90

camera based signal processing techniques in particular. Section 2.2 reviews the methods of localizing91



Version February 2, 2017 submitted to Machines 4 of 53

the vehicle with respect to its environment, especially with map-based localization techniques.92

Autonomous vehicle decision making processes are reviewed in Section 3, with greater emphasis in93

the areas of behavioral and motion planning,. Section 4 discusses the theoretical design and practical94

implementation of autonomous vehicle control systems. Recent advances in the field of multi-vehicle95

cooperation will be reviewed in Section 5, and finally Section 6 concludes the paper.96

2. Perception97

2.1. Environmental Perception98

Environment perception is a fundamental function to enable autonomous vehicles, which99

provides the vehicle with crucial information on the driving environment, including the free drivable100

areas and surrounding obstacles’ locations, velocities, and even predictions of their future states.101

Based on the sensors implemented, the environment perception task can be tackled by using LIDARs,102

cameras, or a fusion between these two kinds of devices. Some other traditional approaches may also103

involve the use of short/long-range radars and ultrasonic sensors, which will not be covered in this104

paper. Regardless of the sensors being implemented, two critical elements of the perception task are105

(i) road surface extraction and (ii) on-road object detection.106

2.1.1. LIDAR107

LIDAR refers to a light detection and ranging device, which sends millions of light pulses108

per second in a well-designed pattern. With its rotating axis, it is able to create a dynamic,109

three-dimensional map of the environment. LIDAR is the heart for object detection for most of the110

existing autonomous vehicles. Fig.3 shows the ideal detection results from a 3D LIDAR, with all the111

moving objects being identified.

Figure 3. The ideal detection result from a 3D LIDAR with all moving objects detected [22]

112

In a real scene, the points returned by the LIDAR are never perfect. The difficulties in handling113

LIDAR points lie in scan point sparsity, missing points, and unorganized patterns. The surrounding114

environment also adds more challenges to the perception as the surfaces may be arbitrary and erratic.115

Sometimes it is even difficult for human beings to perceive useful information from a visualization of116

the scan points.117
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2.1.1.1. Representation118

The output from the LIDAR is the sparse 3D points reflected back from the objects, with119

each point representing an object’s surface location in 3D with respect to the LIDAR. Three main120

representations of the points are commonly used, including point clouds, features, and grids [23].121

Point cloud based approaches directly use the raw sensor data for further processing. This122

approach provides a finer representation of the environment, but at the expense of increased123

processing time and reduced memory efficiency. To mitigate this, usually a voxel-based filtering124

mechanism is applied to the raw point cloud to reduce the number of points, e.g.[24] [25].125

Feature based approaches first extract parametric features out of the point cloud and represent126

the environment using the extracted features. The features that are commonly used include lines127

[26] and surfaces [27]. This approach is the most memory-efficient, but it is often too abstract,128

and its accuracy is subject to the nature of the point cloud, as not all environment features can be129

approximated well by aforementioned set of feature types.130

Grid based approaches discretize the space into small grids, each of which is filled with131

information from the point cloud such that a point neighborhood is established [28]. As pointed132

out in [23], this approach is memory-efficient and has no dependency on predefined features. But it is133

not straightforward to determine the size of the discretization. In [29], an adaptive octree was created134

to guide the segmentation from coarse grids to fine ones.135

2.1.1.2. Segmentation algorithms136

To perceive the 3D point cloud information, normally two steps are involved: segmentation137

and classification. Some may include a third step, time integration, to improve the accuracy138

and consistency. Segmentation of point cloud is the process of clustering points into multiple139

homogeneous groups, while classification is to identify the class of the segmented clusters, e.g. bike,140

car, pedestrian, road surface, etc.141

As summarized in the survey paper [30], the algorithms for 3D point cloud segmentation can142

be divided into five categorizes: edge based, region based, attributes based, model based, and graph143

based. In this section, we will provide supplementary reviews to reveal the recent development in144

this field. As a result, a new category is identified, which is based on deep learning algorithms.145

Edge based methods are mainly used for particular tasks in which the object must have strong146

artificial edge features, like road curb detection [31] [32]. But it is not a useful approach for nature147

scene detection and is susceptible to noise. To improve the robustness, in [33], the elevation gradients148

of principal points are computed, and a gradient filter is applied to filter out points with fluctuations.149

Region based methods make use of region growing mechanisms to cluster neighborhood points150

based on certain criteria, e.g. Euclidean distance [34][35] or surface normals [36]. In most cases,151

the process starts with generating some seed points and then growing regions from those points152

according to a predefined criteria. As compared against the edge based method, this approach153

is more general and practical. It also avoids the local view problem as it takes neighborhood154

information into account. In [37], a scan-line based algorithm was proposed to identify the local155

lowest points, and those points were taken as the seeds to grow into ground segments based on156

slope and elevation. A feature based on the normal vector and flatness of a point neighborhood was157

developed in [38] to grow the regions in trees and non-planar areas. To make the growing process158

more robust, a self-adaptive Euclidean clustering algorithm was proposed in [34]. In [39], a new159

attribute “unevenness,” which was derived based on the difference between the ranges of successive160

scanning rings from each laser beam, was proposed as the growing criteria. As claimed in [40], [41],161

and [42], it was more capable of detecting small obstacles and less sensitive to the presence of ground162

slopes, vehicle pitch, and roll.163

In the literature, some researchers also looked into how to effectively generate the seed points164

by taking more heuristics into account so that they can lead to a more effective and robust region165

growing process. In [43], Vieira et al. first removed points at sharp edges based on curvatures before166
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selecting the seed points, since good seed points are typically found in the interior of a region, rather167

than at its boundaries. In [44], the normal of each point was first estimated, then the point with168

the minimum residual was selected as the initial seed point, while in [45], the local plane, instead169

of normal, at each point was extracted and a corresponding score was computed followed by the170

selection of seed planes based on the score. A multi-stage seed generation process was proposed in171

[28]. Non-empty voxels were grouped into segments based on proximity, and these segments served172

as the seeds for the next segmentation process, which made use of the coherence and proximity of173

the coplanar points. Finally the neighborhood coplanar point segments are merged based on plane174

connection and intersection.175

The region based segmentation methods have been implemented widely in the literature,176

however as pointed out in [46] [47] [30] [29], the segmentation results depend too heavily on177

the selection of the seed points. Poorly selected points may result in inadequate and inefficient178

segmentations, and different choices of seed points usually lead to different segmentations [25].179

Additionally, all of the region based methods require extensive computation resources, taxing both180

time and memory [48] [29].181

Model based methods, also known as parametric methods, first fit the points into predefined182

models. These models, like plane, sphere, cone, and cylinder, normally can be expressed effectively183

and compactly in a closed mathematic form. Those inliers to a particular model are clustered as one184

segment. Most of the model based methods are designed to segment the ground plane. The two185

most widely implemented model fitting algorithms in the literature are RANSAC (Random sample186

consensus) and HT (Hough Transform). Therefore, the model based methods share the same pros187

and cons as these two algorithms.188

In [49], [50], [24], [32], and [27], the authors implemented the RANSAC algorithm to segment the189

ground plane in the point cloud with the assumption of flat surface. However, as mentioned in [51]190

and [23], for non-planar surfaces, such as undulated roads, uphill, downhill, and humps, this model191

fitting method is not adequate.192

To mitigate these defects, [52] fitted the plane into quadratic form instead of planar form based193

on RANSAC. Then a region growing process was designed to refine the quadratic plane. Asvadi194

et al. in [51] divided the space in front of the vehicle into several equal-distant (5m) strips and fit195

one plane for each strip based on least square fitting. In [23], a piecewise ground surface estimation196

was proposed, which consist of four steps: slicing, gating, plane fitting, and validation. The slicing197

step slices the space in front of the vehicle into regions with approximately equal number of LIDAR198

points, whereas the gating step rejects outliers in each region based on interquartile range method.199

RANSAC plane fitting is then applied to each sliced region to find all the piecewise planes, and a final200

validation step is carried out by examining the normal and height differences between consecutive201

planes.202

The HT model fitting methods can also be found in the literature to fit different models, e.g.203

planes, cylinders, and spheres. In [53] and [54], the 3D HT was applied on point level and normal204

vectors to identify planar structures in the point clouds, whereas in [55], the authors proposed a205

sequential HT algorithm to detect cylinders in the point cloud. This sequential approach reduced the206

time and space complexity as compared to the conventional approach which required 5-D Hough207

space.208

As elaborated above, the model based methods are well established in the literature for planar209

surface extraction. Normally, these methods are used as a primary step in segmentation to remove210

the ground plane, while other methods, e.g. region growing, are then applied to cluster the211

remaining points. However, the major disadvantage of model based methods is that it does not212

take neighborhood and context information into account, and thus it may force random points into213

a particular model. Furthermore, the segmentation is sensitive to the point cloud density, position214

accuracy, and noise [29].215
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Attribute methods normally take a two-step approach, where the first step is to compute the216

attribute for each point, and the second step is to cluster the points based on the associated attributes.217

As mentioned in [30], this set of methods allow for more cues to be incorporated into the formulation218

on top spatial information. But the success of the segmentation also depends strongly on the derived219

hidden attributes.220

Besides those works reviewed in [30], the attribute based algorithm proposed in [56]221

demonstrated that it was capable of segmenting pole-like objects, which was considered as222

challenging due to its thin feature. In this algorithm, the optimal neighborhood size of each point223

was first calculated. The geometric features, taking the neighboring information into account, were224

derived based on PCA (Principle Component Analysis). Each point was then assigned with three225

types of attributes (linear, planar, and spherical) using LIBSVM [57] by taking the geometric features226

as input. Finally, segmentation rules were designed to cluster the points based on their associated227

attributes.228

The other group of methods that are widely used in the literature is graph based methods. These229

methods cast the point cloud into a graph structures with each point as the vertex/node and the230

connection between neighbor points as graph edges. The graph based method has demonstrated231

its strength in image semantic segmentation as it is able to incorporate local and global cues,232

neighborhood information, context, smoothness, and other customized features into its formulation233

and optimize the segmentation globally across the entire image.234

Following the graph cut methods in image segmentation, in the content of point cloud, they235

always follow the form of CRF (Conditional Random Field [58]) or MRF (Markov Random Field),236

and the optimization is normally through min-max flow cut algorithm or its variations.237

In [59] and [60], the authors first created a k-nearest neighbors graph, assigned each node238

according to a background penalty function, added hard foreground constraints, and solved the239

foreground and background segmentation through min-cut. Moosmann et al. [25] used the graph240

based method to segment ground and objects using a unified and generic criterion based on local241

convexity measures.242

As to be shown later, the graph based methods have also been implemented as the pipelines for243

sensor fusion between LIDAR and vision. Compared to other methods, graph based ones are more244

robust in dealing with complex scene due to their global features as aforementioned. The major issue245

with these methods is that it normally takes more time to compute, especially for the optimization246

part.247

With the recent development in machine learning algorithms in computer vision, some248

researchers also looked into how to apply machine learning architectures, which are normally applied249

to 2D image, into the 3D point cloud for segmentation and detection. A commonly used dataset is250

proposed in [61], which contains a colored 3D point cloud of several Haussmanian style facades.251

In [62], the author implemented the Random Forest classifier to classify each point into one252

semantic class. The classifier was trained based on the light-weight 3D features. Afterwards,253

individual facades were separated by detecting differences in the semantic structure. To improve254

the memory efficiency and segmentation accuracy, Riegler et al. [63] proposed an Octree Network255

based on 3D convolution. It exploits the sparsity in the point cloud and focuses memory allocation256

and computation in order to enable a deeper network without compromising resolution.257

This set of algorithms is recently developed and thus has some crucial and practical issues which258

makes it difficult to achieve real time operation. But they do provide new insights into the point cloud259

segmentation problem. As to be shown in the detection algorithm, they can provide a unified pipeline260

to combine the segmentation and detection processes.261

2.1.1.3. Detection algorithm262

After the segmentation, each cluster needs to be categorized into different objects. The263

information embedded in each cluster is mainly from spatial relationship and the LIDAR intensity of264
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the points, which has very limited use in object recognition. Thus most of the algorithms will leverage265

the detection problem on computer vision through some fusion mechanisms as to be shown later. But266

there does exist some other research works exploring the possibility to perform object recognition267

from point cloud data.268

In [25], the authors proposed a primary classifier to recognize ground clusters. For each segment,269

a histogram over all the surface normal vectors’ height values was generated, and if the last bin270

contained the most votes, that segment was classified as ground. This algorithm is not able to271

differentiate the objects above the ground.272

Zhang et al. [64] proposed an SVM (Support Vector Machine) based classifier to classify the273

clusters into ground, vegetation, building, power line, and vehicle. In total 13 features were derived274

as the input to the SVM classifier. But this classifier is still very coarse, which is not practical enough275

for the autonomous vehicle applications.276

The recently developed machine learning algorithms are more general and robust as compared277

to the aforementioned ones as they are able to recognize more categories of objects. In [65], VoxNet278

was proposed, which implemented a 3D convolutional neural network to classify the 3D point279

cloud (in occupancy grid/volumetric representation). While in [66], the volumetric based 3D CNN280

was improved by introducing auxiliary learning tasks on part of an object and combining data281

augmentation with multi-orientation pooling. In [67], a 3D Convolutional Deep Belief Network282

was proposed to learn the distribution of complex 3D shapes across different object categories and283

arbitrary poses from raw CAD data.284

However, as mentioned in [63], for 3D networks, the computational and memory requirements285

increase cubically with the input size of the 3D point cloud. All the aforementioned methods can286

only operate at the order of 303 voxels, which is able to fully exploit the rich and detailed geometry287

of 3D objects. As reviewed in the segmentation part, the Octree Networks in [63] is a more efficient288

architecture to handle the 3D point cloud. It has improved the input cluster resolution from the order289

of 303 to 2563.290

2.1.2. Vision291

The vision system in autonomous vehicle environment perception normally involves road292

detection and on-road object detection. The road detection also includes two categories: lane line293

marking detection and road surface detection. In the following sections, we will review the works294

under each of the categories. At the same time, the recently developed deep learning approaches295

will be included. For more information on conventional hand-crafted feature/cue based approaches,296

interested readers may refer to the following survey papers: [68] [69] for lane line marking detection,297

[70] for road surface detection, [71] [72] for vehicle detection and [73] for pedestrian detection.298

2.1.2.1. Lane line marking detection299

Lane line marking detection is to identify the lane line markings on the road and estimate the300

vehicle pose with respect to the detected lines. This piece of information can be served as the vehicle301

position feedback to vehicle control systems. A vast amount of research work has been done in this302

domain since a few decades ago [8]. However, it is yet to be completely solved and has remained as303

a challenging problem due to the wide range of uncertainties in real traffic road conditions and road304

singularities [74], which may include shadows from cars and trees, variation of lighting conditions,305

worn-out lane markings, and other markings such as directional arrows, warning text, and zebra306

crossings [75].307

As summarized in the survey paper by Hillel et al. in [68], most of the lane line detection308

algorithms share three common steps: 1) lane line feature extraction, by edge detection [76] [77]309

and color [78] [79], by learning algorithms such as SVM [80], or by boost classification [81] [82],310

2) fitting the pixels into different models, e.g. straight lines [83][84], parabolas [85][86], hyperbolas311

[87][88][89], and even zigzag line [90], 3) estimating the vehicle pose based on the fitted model. A312
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fourth time integration step may exist before the vehicle pose estimation in order to impose temporal313

continuity, where the detection result in the current frame is used to guide the next search through314

filter mechanisms, such as Kalman filter [76] [91] and particle filter [80] [92] [90].315

Lane line feature extraction is to identify the pixels that belong to lane line markings and316

eliminate non-lane line marking pixels. Most approaches in the literature are based on the317

observations that lane markings have large contrast compared to road pavement.318

Some gradient based algorithms can be commonly found in the literature e.g. Sobel edge detector319

with symmetrical local threshold [93], adaptive thresholding [91], and gradient-enhancing conversion320

[94]. But these algorithms are sensitive to noise and can result in a large number of outliers from321

clutter and shadows. Furthermore, they are limited to local view and ignore the shape feature of lane322

line markings (long and thin bright structures).323

Some other more advanced variants based on image gradient have been proposed in the324

literature, which are less sensitive to noise. For example, the steerable filter ([69][85]) is based on325

second order derivatives of 2D Gaussians, and ridge detector ([95][96]) is based on tensor field326

construction of first order derivatives. Both methods are able to obtain the response of gradient327

directions which facilitates to remove outliers if their directions deviate too much from the presumed328

lane line direction.329

Another set of algorithms attempts to detect lane line markings from a different perspective,330

searching for low-high-low intensity pattern along image rows. The most common algorithm of this331

type is the box filter (also known as the top-hat filter) or other forms of variants, e.g. [97], [98], [99],332

and [100]. They are considered as more reliable than the aforementioned algorithms. In brief, they333

convolute the image with a certain form of step filter and select the high response pixels as the lane334

line candidates at each image row. Normally, they are capable of extracting the medial axis of lane335

line markings instead of edges.336

For this kind of algorithm to work properly, its scale or step width must be tuned accurately337

according to the lane line marking width in the image, to prevent under/over filtering. Otherwise,338

the original image has to be transformed through inverse-perspective mapping (IPM) to compensate339

for the camera perspective effect (e.g. [101] [102]). But this also requires a good estimation of camera340

pitch angle (or viewing angle). At the same time, interpolation is needed to make up for the missing341

pixels in the IPM image. As the viewing distance becomes larger, the interpolation becomes more342

and more inaccurate. To solve this problem, [90] provides an adaptive mechanism to update the step343

width online based on the previous width measurements.344

Another shortcoming that is common to the aforementioned lane line extraction algorithms is345

that they cannot distinguish lane line markings from other on-road markings, such as warning letters,346

humps and so on. These on-road markings may occasionally result in severe estimation errors.347

The second step is model fitting. It is the process to extract a compact high-level representation348

of the lane from the lane line detection results. Depending on the model used, the vehicle pose can349

be derived from the fitted model as shown in [95] and [88]. The model can also be used to guide the350

lane line detection in the next frame to improve continuity (e.g. [103] [104] [90]).351

Various road models have been proposed in the literature. Those reviewed above are parametric352

models. Another category is semi-parametric, which mainly consists of splines, such as B-Snake353

[105], Cubic splines [80], active contours [106], etc. The advantage of these models is that they are354

more flexible and can cover various road shapes. But they are more computationally demanding and355

complex. They also require a good selection of control points. As concluded in [68], since there is no356

single model that can cover all kinds of road shapes, online model selection should be considered.357

The time integration step is to make use of previous information to guide the search in the current358

image. It imposes smoothness and continuity between consecutive images. It can improve vehicle359

pose estimation accuracy and prevent erroneous detection failures.360

Most of the proposed approaches are stochastic. For example, the Kalman filter can be found in361

[69], [97], and [107], and particle filter is applied in [80], [85], [92], and [104]. As pointed out in [68],362
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the particle filter is more reliable, especially under abrupt changes in between consecutive images363

induced by vehicle vibrations or non-flat road surfaces.364

In general, the particle filter can be implemented directly to the image (or pixels), lane line model,365

and vehicle. For example, in [80], each particle contains the locations of control points in the image366

for cubic spline fitting. In [92] and [102], each particle represents lane line model parameters. The367

change of parameters is simply assumed to follow a Gaussian distribution. But they did not mention368

how the covariance matrix was obtained. In [85], each particle represents the location of the vehicle369

in real world coordinates, but again the motion of vehicle is simply assumed to be Gaussian. Since370

the change between consecutive images is purely due to the vehicle motion, [90] provided a more371

intuitive and straightforward approach which applied the particle filter to the moving vehicle and372

took its explicit dynamic model into account.373

The last step in the lane-level localization is to estimate the vehicle lateral position and moving374

orientation based on the lane line model. To recover this information from 2D image to 3D real world,375

depth is required. In most approaches, depth is derived from the camera viewing angle or pitch angle376

by assuming constant camera height and flat road surface. One typical example is the IPM, but it377

depends strongly on the pitch angle and it is sensitive to pitch angle estimation noise.378

A more reliable and direct way to recover the depth is through stereo cameras, given that the379

disparity image can be constructed effectively and accurately. However, as mentioned in [68], the380

low texture of road surface poses a processing challenge to obtain the disparity image. This is381

the main reason why stereo is not widely adopted in this research field. In [108], the author used382

dense mapping to obtain disparity while in [109], Maximum A Posteriori - Markov Random Field383

(MAP-MRF) approach was applied. But both methods are not very effective and subject to smoothing384

noise. To mitigate these drawbacks, Du et al. [90] proposed a lane line model based correspondence385

matching algorithm.386

2.1.2.2. Road surface detection387

Road surface detection informs the autonomous vehicle on the locations of free space where it388

can drive without collision. It is the prerequisite for any online path planning and control operations.389

Generally speaking, the approaches can be divided into three categories: feature/cue based detection,390

feature/cue based learning, and deep learning.391

The feature/cue based detection approaches first identify the feature points or patches in the392

original image based on some predefined features (e.g. HOG). In the context of stereo images,393

the feature may refer to the disparity. Based on the identified features, either model fitting or394

segmentation kind of algorithms will be applied to identify the road surfaces.395

In [110], a general B-spline model fitting algorithm was applied based on the stereo disparity396

measurement to represent the road surface. This approach dropped the assumption of flat road397

surface. And a Kalman filter was designed to further smooth the fitting results.398

Instead of using model fitting, [111] cast the road surface detection problem into a CRF399

optimization problem. The authors constructed the CRF energy function by taking both object class400

labeling and dense stereo reconstruction into the formulation and jointly optimized these two tasks,401

which improved the performance of each individual task.402

The feature/cue learning based approaches also extract a set of features associated to pixels or403

image patches and then train a classifier based on the features to assign a road or non-road label to404

the pixels or patches.405

In [112], the authors proposed a detection algorithm to learn the contextual information which406

can facilitate the classification of the targeted image patch. For each image patch, besides itself, it is407

also associated with another two types of auxiliary image patches: the contextual patches obtained408

based on a predefined pattern surrounding the target image patch and road patches positioned at the409

bottom part of the image. Three feature vectors are extracted from these three types of patches and410

then concatenated into one single final vector. The vector is fed to a MLP (Multilayer Perceptron)411
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neural network to do classification. But this method is not able to take the global information into412

account and the selection of the road patches is controversial, as it is based on the assumption that413

the bottom part of the image is always road region.414

Tobias et al. [113] proposed a two-hierarchy detection framework which incorporated the spatial415

layout of the scene to handle a high variety of complex situations. The first layer consists of three base416

classifiers for road boundary, road and lane markings. The three classifiers are trained separately to417

generate three confidence maps. The spatial ray features that incorporate properties of the global418

environment are generated based on the confidence maps. Finally, a GentleBoost classifier [114] was419

trained based on the spatial ray features.420

In both [115] and [116], the classifier, which used a joint boosting algorithm, incorporated the421

feature maps based on textons (filter-bank, color, HoG and location) and disptons (U-disptons and422

V-disptons).423

However, all these aforementioned algorithms under feature detection or feature learning424

categories are not robust enough under the erratic driving environments. The performances are still425

subjected to all the noise factors as listed in the lane line marking detection section.426

As shown in the well-know database KITTI [117], the top five performances for road detection427

(excluding those non-published entries) all fall under the category of deep learning. As highlighted428

in [70], the deep learning framework has gained popularity during the past few years, especially with429

the development of suitable processors and implementations [118].430

Both [119] and [120] took an image patch as the input to the Convolutional Neural Network431

(CNN) which classified the center point of the image patch as to whether it was road or not. In [120],432

the author also demonstrated how to incorporate the spatial information of the patch into the CNN433

to enable the learning of spatial priors on top of appearances.434

Different from these two approaches, Mohan [121] proposed a novel architecture that integrated435

the CNN with deep de-convolutional neural networks. The architecture was also employed for436

multi-patch training, which made it possible to effectively learn spatial priors from scenes. This437

approach has yielded the state-of-the-art performance in the KITTI dataset.438

Despite its excellent performance, the drawbacks of deep learning approaches are also very439

obvious: huge computation and memory requirement, long process time, non-traceable, and tedious440

ground truth annotation process. In [122], a new CNN structure was proposed with the aim to achieve441

a good trade-off between segmentation quality and runtime. This also integrated a CNN with deep442

de-convolution network, but a new mapping between classes and filters at the de-convolution side443

was designed to reduce the runtime. It took the entire image at its original resolution, instead of444

image patches, as network input and achieved a run time of about 50 ms.445

To mitigate the difficulties in ground truth annotation, [123] proposed map-supervised deep446

learning pipeline. In this approach, the ground truth annotation was done automatically based on447

the vehicle position, heading direction, camera parameters, GPS, and OpenStreetMap data. The448

annotation noise was further reduced by using pixel appearance features. A CNN was trained based449

on these machine generated ground truth annotations.450

2.1.2.3. On-road object detection451

On-road object detection mainly concerns vehicle and pedestrian object classes. Due to the452

various types, appearances, shapes, and sizes of the objects, those methods reviewed in [71] [72] and453

[73] are not robust and not general enough for the application of autonomous vehicles. As listed in the454

KITTI database, for car, pedestrian, and cyclist detections, all of the leading entries and state of the art455

methods are based on deep learning schemes. Deep learning has shown its superior performance as456

compared to conventional learning or feature based approaches in the domain of obstacle detection.457

Therefore, in this section, we will only review the deep learning based approaches.458

Normally, the general pipeline for deep learning approaches is that a set of proposal bounding459

boxes needs to be generated around the input image, then each proposal box will be sent through the460
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CNN network to determine a classification (including background) and fine tune its bounding box461

locations as well. The common methods for bounding box proposal are Selective Search [124] and462

EdgeBoxes [125], which both rely on inexpensive hand-crafted features and economical inference463

schemes.464

In [126], an energy minimization approach was presented for bounding box proposal. These465

proposals were generated by exhaustively placing 3D bounding boxes on the ground-plane,466

projecting them to the image plane and scoring them via simple and efficiently computable image467

features including semantic and object instance segmentation, context, shape features, and location468

priors to score the boxes. Per-class weights were also learnt for these features using S-SVM, adapting469

to each individual object class.470

Faster-RCNN [127] was the first deep learning scheme that unify both the bounding box proposal471

and detection under the same network and achieved an end-to-end training process. The network472

consists of two major parts: proposal net and detection net, where these two nets share most of the473

CNN layers. The output from the proposal net are the proposed bounding boxes, which is used as474

the input to the detection net for recognition and bounding box fine tuning processes.475

Although in the training process Faster-RCNN does not fix the proposal box sizes and thus is476

supposed to be invariant to object scales, but when it comes to challenging scenarios where the scales477

of the object vary dramatically, its performance on small object detection is not very satisfying. The478

main reason is that for small objects in the original image, after several layers of convolution and479

pooling, the remaining information in the last layer is too little for a good detection. This issue can480

be addressed by enlarging the input image size or by using a set of images at different scale sizes as481

input [128], but this will increase the computation time and memory requirement as well.482

To address the scale issue, in [129], Yang et al. proposed a scale-dependent pooling (SDP)483

network. Instead of pooling the feature vectors only from the last convolution layer in the network,484

the feature vectors for smaller proposal bounding boxes were pooled in earlier convolution layers485

according to box heights. The detection and bounding box fine tuning were carried out separately at486

different layers accordingly. To improve the efficiency, the author also trained a classical cascaded487

rejection classifiers (CRC) based on MLP to filter out some proposal boxes at every layer. This488

approach is not unified and not able to be trained end-to-end. The bounding box proposal was based489

on Edgebox.490

In [130], the authors proposed a unified multi-scale deep learning network (MS-CNN), which491

took the original image as the only input and output the bounding boxes and object categories for492

the associated bounding boxes. Similar to Faster-RCNN, this network also combined a proposal493

net and detection net. Similar to the SDP net, the proposal net in MS-CNN pooled features from494

different layers to generate bounding box proposals. All these proposals were then passed to the495

same detection net for object recognition and bounding box fine tuning.496

All the aforementioned algorithms target to detect the object in the 2D image, with no output497

information on the 3D world. In [131], by further dividing the object category into sub-categories498

based on their 2D appearance, 3D pose and 3D shape, the authors were able to train the deep learning499

network to recover both 2D and 3D information from the 2D image. The proposed network, named500

as Sub-CNN, consisted of two CNN networks, subcategory-aware CNN and object detection CNN.501

The subcategory-aware CNN generated proposal bounding boxes to the object detection network.502

Unlike Faster-RCNN and MS-CNN, these two networks did not share any CNN layers. In the KITTI503

benchmark, both MS-CNN and Sub-CNN achieved similar state-of-the-art performance in object504

detection. Sub-CNN took longer run time (2s vs. 0.4s) since it had two separated CNN nets, but it505

was able to reveal the 3D world information which is more useful for autonomous vehicles.506

There also exists some other approaches in the literature to reduce the processing time so that507

the deep learning approach can achieve (near) real time performance, e.g. YOLO (You Only Look508

Once) [132], SSD (Single Shot Detection) [133]. They are able to process the images at more than 30509

frames per second, varying with the size of the network. But the fast performance is achieved at the510
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expense of detection rate. As the technologies in both hardware and software develop further, a better511

trade-off between the run time and detection rate can be achieved.512

2.1.3. Fusion513

Different sensors have different strengths and weaknesses. Sensor fusion techniques are required514

to make full use of the advantages of each sensor. In the context of autonomous vehicle environment515

perception, LIDAR is able to produce 3D measurements and is not affected by the illumination of516

the environment, but it offers little information on objects’ appearances; conversely, camera is able517

to provide rich appearance data with much more details on the objects, but its performance is not518

consistent across different illumination conditions; furthermore, camera does not implicitly provide519

3D information.520

Following [134], the techniques that have been applied to LIDAR and camera fusion can be521

roughly divided into two main categories based on their fusion process locations, including fusion at522

feature level (early stage, centralized fusion) and fusion at decision level (late stage, decentralized523

fusion). Based on the fusion mechanisms, they can be divided into the following categories:524

MRF/CRF based, probability based, and deep learning based.525

In [135], each point in the point cloud has an associated pixel in the image, based on the transform526

between the LIDAR device and camera. Thus the color intensity of the pixel can be assigned to the527

point. An MRF was designed by converting the point cloud into a graph with all of the points being528

graph nodes. The energy minimization function modelled the correlations between the changes in529

intensity and depth of the points. This approach only made use of the intensity information from530

image and ignored the rest of the image cues.531

Xiao et al. also proposed a random field approach in [136] for sensor fusion but with different532

energy formulation as compared to [135]. The energy function consists of three terms, out of which,533

two were the same as normal MRF terms (value term and smoothness term). The third term was based534

on the laser points. A classifier was pre-trained to classify the laser points as to whether they were535

road or non-road points. These points were then projected to the image plane, and the corresponding536

pixels were assigned with the same probability of the points. The third term was derived from these537

probabilities.538

In [137], instead of using sparse laser points directly, the author reconstructed the dense depth539

map from the point cloud by upsampling the points. Two sets of HOG (histogram of gradient)540

pyramids based on the original image and the dense depth map were extracted, and a multi scale541

deformable part model [138] was learnt for pedestrian detection based on the HOG pyramids.542

[139] provided a decentralized approach for sensor fusion. The camera data was used to train543

an AdaBoost classifier while the LIDAR data was used to train a GMM (Gaussian Mixture Model)544

classifier [140]. A sum decision rule, based on the posteriori probabilities calculated by each classifier545

was then designed to ultimately classify an object.546

The deep learning based sensor fusion scheme always requires a dense depth map or its variants,547

indicating that the point cloud needs to be converted into depth map. For example, in [141], the image548

and the depth map went through two separated CNN networks, and only the feature vectors from the549

last layer were concatenated to jointly carry out the final detection task. In [142], the point cloud was550

first converted into a three-channel HHA map (which contains Horizontal disparity, Height above551

ground, and Angle). The HHA and RGB (Red-Green-Blue color channel) images went through two552

different CNN networks as well but the author found that the fusion should be done at the early to553

middle layers of the CNN instead of the last layer.554

In conclusion, sensor fusion between LIDAR and camera is necessary in order to make the best555

use of these devices and achieve a robust environment perception result for autonomous vehicles.556

But the current fusion mechanisms are still in a preliminary stage and not able to fully make use of all557

the information from both sensors. Furthermore, those newly developed deep learning algorithms558

for object detection, as reviewed in Section 2.1.2, have not yet been extended to operate over fused559
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camera and LIDAR information, where such an extension could yield significant performance boosts560

over individual sensor data processing.561

2.2. Localization562

Localization is the problem of determining the pose of the ego vehicle and measuring its own563

motion. It is one of the fundamental capabilities that enables autonomous driving. However, it is564

often difficult and impractical to determine the exact pose (position and orientation) of the vehicle,565

and therefore the localization problem is often formulated as a pose estimation problem [143].566

The problem of estimating the ego vehicle’s pose can generally be divided into two567

sub-problems, namely the pose fixing problem and the dead reckoning problem. In the pose fixing568

problem, the measurement is related to the pose by an algebraic/transcendental equation. Pose fixing569

requires the capacity to predict a measurement given a pose, e.g. a map. In the dead reckoning570

problem, the state is related to the observation by a set of differential equations, and these equations571

have to be integrated in order to navigate. In this case, sensor measurements may not necessarily be572

inferable from a given pose. In this sense, pose fixing and dead reckoning complement each other.573

One of the most popular ways of localizing a vehicle is the fusion of satellite-based navigation574

systems and inertial navigation systems. Satellite navigation systems, such as GPS and GLONASS,575

can provide a regular fix on the global position of the vehicle. Their accuracy can vary from a576

few of tens of meters to a few millimetres depending on the signal strength, and the quality of577

the equipment used. Inertial navigation systems, which use accelerometer, gyroscope, and signal578

processing techniques to estimate the attitude of the vehicle, do not require external infrastructure.579

However, without the addition of other sensors, the initiation of inertial navigation system can be580

difficult, and the error grows in unbounded fashion over time.581

The use of GPS in localization requires reliable service signals from external satellites. This582

method is reliable only when the GPS signal and dead reckoning odometry of the vehicle is reliable,583

and may require expensive, high-precision sensors. A few good examples of problematic areas are584

in indoor environments, underground tunnels, and urban canyons, where tall buildings deny good585

GPS signal readings to the vehicle. In [144,145], road matching algorithms which use a prior road586

map to constrain the motion of the vehicle are used in conjunction with GPS and INS to update the587

localization estimation of the vehicle. The inclusion of road matching improves the accuracy in global588

localization. However, the method still couldn’t fully achieve precise pose estimation of the vehicle589

with respect to its environment to the level required for autonomous driving.590

Map aided localization algorithms use local features to achieve highly precise localization, and591

have seen tremendous development in recent years. In particular, Simultaneous Localization and592

Mapping (SLAM) has received much attention. The goal of SLAM is to build a map and use it593

concurrently as it is built. SLAM algorithms leverage old features that have been observed by594

the robot’s sensors to estimate its position in the map and locate new features. Although it is not595

possible to determine the absolute position, SLAM uses statistical modelling that takes into account596

the odometry of the vehicle to remove most of the inconsistency between where the features are597

predicted to be and where it is based on the sensor readings. In general there are two approaches to598

SLAM problem: Bayesian filtering and smoothing.599

The goal of formulating SLAM as a Bayesian filtering problem is to estimate the joint posterior600

probability p(x1:t, m|z1:t, u1:t−1) about the map m and robot trajectory x1:t = x1, · · · , xt, given its601

sensor measurement z1:t = z1, · · · , zt, and inputs to the system u1:t−1 = u1, · · · , ut−1. Popular602

methods in this category are Extended Kalman Filter (EKF), Extended Information Filter (EIF), and603

Particle Filter (PF) [146–149].604

A variation of the Particle Filter, Rao-Blackwellized Particle Filters(RBPF), has also been605

introduced as a solution to the SLAM problem in [150,151]. In RBPF, the vehicle’s trajectory and606

the associated map are represented by a particle, and factorizes the probabilities according to the607

following equation:608
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p(x1:t, m|z1:t, u1:t−1) = p(m|x1:t, z1:t) · p(x1:t|z1:t, u1:t−1) (1)

This equation is referred to as Rao-Blackwellization, and allows the trajectory of the vehicle to609

be first computed before the map is constructed based on the computed trajectory. This approach610

provides efficient computation since the map is strongly correlated to the vehicle’s trajectory.611

The posterior probability p(x1:t|z1:t, u1:t−1) is computed with a particle filter, in which the prior612

distribution is obtained from the vehicle’s odometry, and refined with observations/ sensor readings.613

Pose graph mapping [152] is a popular example of smoothing based SLAM. The SLAM problem614

is formulated as an optimization problem to minimize the error, by exploiting the inherent sparsity of615

a map. A few recently proposed algorithms of this type are TreeMap[153], TORO [154], iSAM [155],616

iSAM2 [156], and g2o [157].617

A key event in smoothing based SLAM is the loop closure, which happens when features that618

have not been seen for a while are observed again from the sensor readings. When a loop closure619

is detected, the error caused by imperfect odometry can then be removed, and a substantial portion620

of the map can be updated. The simplest way of doing loop closure is by performing pair wise621

matching for possible loop closure by considering all observations that are within a pre-determined622

radius from a node in the pose graph [158]. More elaborate ways of detecting loop closures are also623

available in the literature, such as by learning from range sensor data [159], or probabilistically from624

visual appearance [160].625

Rejecting false loop closure constraints is still an open research problem. Robust automatic626

loop closure detection is still a very active research topic. Various extension to the current SLAM627

algorithm to make the loop closure detection more robust such as Switchable Constraint method [161],628

Max-Mixture Model [162], and Realizing, Reversing, Recovering techniques [163] have been proposed629

in recent literature.630

Scan matching is another key event in pose graph construction. Popular algorithms include631

Iterative Closest Point (ICP) [164], where each reference scan is matched with a query scan by aligning632

them according to a distance metric [165], and feature histogram based scan matching algorithms,633

such as Normal Distribution Transform (NDT) [166] and Spin Images [167].634

Embedding the map with additional information is another active research topic. The635

term semantic mapping is widely referred to in the literature as augmenting the traditional636

metric/topological map with a higher level semantic understanding of the environment. In general,637

approaches to semantic mapping can be categorized into three categories: object based, appearance638

based, and activity based.639

Appearance based semantic mapping techniques interpret sensor readings to construct semantic640

information of the environment. A few examples, such as [168,169], use geometric features641

from planar LIDARS. Vision can also be fused with LIDAR data for further classification and642

understanding of the environment [170–172].643

Object based semantic mapping uses the occurrence of key objects to build a semantic644

understanding of the environments [173,174], where object recognition and classification is often a645

very important event in object based semantic understanding of the environment.646

The activity based approach to semantic mapping relies on information about the activities of647

the agents around the robot. This topic is relatively less mature compared to appearance and object648

based semantic mapping. A few examples of this technique are found in [174,175] where external649

agent activities are used to semantically understand and classify the context of the environment (e.g.650

sidewalk versus road, etc.).651

The map-aided localization algorithms can then use these features to localize the robot to a652

pre-recorded map and based on its surrounding features. In [176], lane markers are extracted from653

the reflectivity values of LIDAR data and are used as local features. With this approach, instead of654

using a self learned map, prior knowledge from open source maps such as Open-Street Map can be655

used, eliminating the map building stage [177]. Virtual 2D ranging is then extracted from 3D point656
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clouds and matched with the map [178]; coupled with GPS and INS data, the position of the vehicle657

can be estimated with Bayesian filtering methods.658

Feature based localization is also another active research topic. The most popular method is659

by using particle filter to localize the vehicle in real time with 3D LIDARs [179]. The algorithm660

first analyses the laser range data by extracting points from the road surface. Then, the reflectivity661

measurements of these points are correlated to a map containing ground reflectivity to update particle662

weights. One underlying assumption in this algorithm is that the road surface remains relatively663

constant, which may undermine the performance in some cases.664

However, the cost of 3D LIDARs can be prohibitive to many applications. Synthetic methods can665

be used to obtain 3D measurements from 2D sensors. For example, accumulated laser sweeps can be666

used as local features. This type of algorithm first generates a swathe of laser data by accumulating 2D667

laser scans from a tilted-down LIDAR [180], then the swathe is matched to a prior 3D data reference668

by minimizing an objective function. This algorithm demonstrates its accuracy and robustness in669

GPS-denied areas. Although an accurate 3D model of the environment in not required, an accurate670

and consistent prior is always desired when the localization is integrated with other navigation671

functions. Similarly in [181,182], a 3D point cloud of the environment is obtained by servoing a672

2D LIDAR, and extracted 2D features are used to perform localization. This method has been shown673

to work well in an indoor environment with well structured ceiling features.674

3. Planning675

3.1. Autonomous Vehicle Planning Systems676

Early-stage self-driving vehicles (SDVs) were generally only semi-autonomous in nature, since677

their designed functionality was typically limited to performing lane following, adaptive cruise678

control, and some other basic functions [183]. Broader capabilities were notably demonstrated in the679

2007 DARPA Urban Challenge (DUC) [184], where it was shown that a more comprehensive planning680

framework could enable a SDV to handle a wide range of urban driving scenarios. Performance of681

the SDVs was still far from matching the quality of human drivers and only six of the 35 competition682

entrants were able to complete the final event, but nevertheless, this milestone demonstrated the683

feasibility of self-driving in an urban environment [10,185–189] and revealed important research684

challenges residing in autonomous driving [190].685

Boss, the winning entry of the DUC, Junior, the second place entry, and Odin, the third place686

entry, along with many others, employed similar three level hierarchical planning frameworks with687

a mission planner, behavioral planner, and motion planner. While the fourth place entry Talos688

reportedly used a two level planner with a navigator and a motion planner, the navigator essentially689

performed the functions of both the mission planner and behavioral planner [191]. The mission690

planner (or route planner) considers high level objectives, such as assignment of pickup/dropoff tasks691

and which roads should be taken to achieve the tasks. The behavioral planner (or decision maker)692

makes ad hoc decisions to properly interact with other agents and follow rules restrictions, and693

thereby generates local objectives, e.g., change lanes, overtake, or proceed through an intersection.694

The motion planner (or local planning) generates appropriate paths and/or sets of actions to achieve695

local objectives, with the most typical objective being to reach a goal region while avoiding obstacle696

collision. Many recent works since the DUC continue to inherit the same three level hierarchical697

structure as described here, though the partitioning of the layers are somewhat blurred with698

variations of the scheme occurring in literature.699

3.2. Mission Planning700

Mission planning generally is performed through graph search over a directed graph network701

which reflects road/path network connectivity. In the DUC, a Route Network Definition File702

(RNDF) was provided as prior information [192]. The RNDF represented traversable road segments703
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by a graph of nodes and edges, and further included information such as stop sign locations,704

lane widths, and parking spot locations. The RNDF was generated manually by the competition705

organizers, however ongoing research targets to generate richer network representations stored in a706

Road Network Graph (RNG) through automated processes, via sensing the infrastructure (i.e. road707

boundaries) directly [193], or even by inference from vehicle motions [194]. Regardless of whether the708

RNG is generated through manual annotation or through an automated method, the route searching709

problem is formulated by assigning edge weights corresponding to the cost of traversing a road710

segment (commonly distance) and applying graph search algorithms. Classical algorithms such as711

Dijkstra’s [195] or A* [196] can be effective for smaller neighborhoods, however more advanced712

methods exist to improve efficiency over large networks, which are detailed in a survey paper focused713

more specifically on the topic of route planning [197].714

3.3. Behavioral Planning715

The behavioral planner is responsible for decision making to ensure the vehicle follows any716

stipulated road rules and interacts with other agents in a conventional, safe manner while making717

incremental progress along the mission planner’s prescribed route. This may be realized through a718

combination of local goal setting, virtual obstacle placement, adjustment of drivable region bounds,719

and/or regional heuristic cost adjustment. Decisions were made onboard most DUC vehicles through720

Finite State Machines (FSMs) of varying complexity to dictate actions in response to specific perceived721

driving contexts [185,186,188,198]. The terms precedence observer and clearance observer were coined to722

categorize functions which checked certain logical conditions required for state transitions, where723

precedence observers were to check whether the rules pertaining to the vehicle’s current location724

would allow for it to progress, and clearance observers would check “time to collision” - the shortest725

time by which a detected obstacle would enter a designated region of interest - to ensure safe clearance726

to other traffic participants. For example, when approaching a stop sign, the SDV would have to both727

ensure precedence by coming to a complete stop at the stop line and wait for any other stationary728

vehicles at the intersection with priority to move off, and ensure clearance by measuring time to729

collision along its intended path (where oncoming traffic may not have to stop at the intersection).730

Finite state machines of this nature are limited in that they are manually designed for a set731

number of specific situations. The vehicle may then perform unexpectedly in a situation that was not732

explicitly accounted for in the FSM structure, perhaps finding itself in a livelock, or even a deadlock733

state if there aren’t sufficient deadlock protections. Recent research works have sought to improve734

organization in large decision making structures to thus manage larger rules sets [199–201]. Other735

works have sought provable assurances in the decision making structure to guarantee adherence to736

rules sets [202]. In [203] and [204], road rules enforcement was checked using Linear-Temporal Logic737

(LTL) considerations, with successful real-world overtaking experiments [204].738

3.4. Motion Planning739

Motion planning is a very broad field of research, applied to mobile robots and manipulating740

arms for a wide variety of applications ranging from manufacturing, medical, emergency response,741

security/surveillance, agriculture and transportation. In the context of mobile robotics, motion742

planning refers to the process of deciding on a sequence of actions to reach a specified goal, typically743

while avoiding collisions with obstacles. Motion planners are commonly compared and evaluated744

based on their computational efficiency and completeness. Computational efficiency refers to the process745

run time and how this scales based on the dimensionality of the configuration space. The algorithm746

is considered complete if it terminates in finite time, always returns a solution when one exists, and747

indicates that no solution exists otherwise [205].748

The motion planning problem has been proven to exhibit great computational complexity,749

especially in high dimensions. For example, the well known piano mover’s planning problem has750



Version February 2, 2017 submitted to Machines 18 of 53

been shown to be PSPACE-hard1 [206]. Furthermore, to guarantee completeness may demand an751

exhaustive search of all possible paths, which leaves many approaches stuck with the “curse of752

dimensionality" in high dimensional configuration spaces; it is increasingly more difficult to represent753

all obstacle occupied spaces and check for obstacle free points as the dimension of the search space754

increases. A core idea behind motion planning is then to overcome this challenge by transforming755

the continuous space model into a discrete model [207]. Two general categories of approaches to756

this transformation exist: 1) combinatorial planning, which builds a discrete representation that exactly757

represents the original problem and 2) sampling-based planning which utilizes a collision checking758

module to conduct discrete searching over samples drawn from the configuration space [207].759

3.4.1. Combinatorial Planning760

Combinatorial planners aim to find a complete solution by building a discrete representation761

which exactly represents the original problem, but which is characterized by convenient properties762

for special case solvers. For example, geometric solutions may efficiently be generated in low763

dimensional spaces with discrete convex obstacle spaces by constructing visibility graphs (shortest764

path solution), Voronoi-diagrams (highest clearance solution), or decomposing the space into obstacle765

free “cells" using obstacle boundaries as cell borders [207]. However the computational burden766

of these methods increases with increased dimensionality of the configuration space and increased767

number of obstacles, and thus combinatorial methods are typically limited in application. This is the768

primary motivation for the development of sampling-based algorithms, which will be discussed in769

the following subsection [208–210].770

While decomposing spaces directly from obstacle geometry may be difficult in practice, other771

decompositions became popular where checks would still need to be made against the presence772

of obstacles. A common simple approach is to apply a uniform discretization over either the773

configuration search space or set of robot actions such that a finite search may be applied to find774

solution paths. By working in discretized spaces, the complexity of an exhaustive search is greatly775

reduced. Although completeness can no longer be guaranteed by these means, these methods may776

be found to be resolution-complete. That is to say that if the space is discretized to a “fine enough"777

resolution, then completeness can be guaranteed. Fine resolutions may however still be hard to778

achieve in high dimensional spaces, leading to excessive computational burden, again from the curse779

of dimensionality.780

Nevertheless, it is still common to employ discretized search methods for road navigation. In781

the DARPA Grand Challenges and the DUC, many teams implemented a simple motion planner by782

which a kinodynamic reachable trajectory set was discretized [10], and/or a trajectory search tree was783

generated based on road geometry [9,10,185]. Such methods are still being refined, with emphasis on784

optimization of smooth velocity profiles [211]. Cell decomposition over the configuration space has785

also been used with some success [186]. An optimal path would typically be found over the finite786

discretization by implementing graph search algorithms, such as A* [196].787

Recent works have also made use of space discretization in order to apply more advanced788

decision making algorithms. For example, cell decomposition was used in [212] and [202] to then789

generate paths which would obey road rules specified via Linear Temporal Logic (LTL). [213] used790

similar LTL methods to further investigate situations where the robot was allowed to break some791

rules (such as always drive in your lane) in order to reach goals that were otherwise obstructed. Cell792

1 A problem is said to belong to PSPACE complexity class if it can be solved by a deterministic Turing machine using an
amount of memory (space) that follows the asymptotic trend of O(nk), k ≥ 0, for an input of length n as n → ∞. A
deterministic Turing machine is a hypothetical device which operates to change symbols/values on a tape, where each
symbol may only be changed one at a time, and only one action is prescribed at a time for any given situation. A problem
A is furthermore considered PSPACE-hard if every problem/language B in PSPACE is polynomial-time reducible to A,
B ≤p A, meaning any B can be translated into instances of A in polynomial time.
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decomposition was also necessary to apply popular models for handling environment uncertainty,793

such as Partially Observable Markov Decision Processes (POMDP) and Mixed Observability Markov794

Decision Processes (MOMDP). In [214] and [215], other moving obstacles’ intentions were inferred795

in real-time while the robot’s motion plan was executed concurrently. POMDPs assume uncertainty796

in both the robot’s motion and in observation and account for this uncertainty in solving for optimal797

policies, where MOMDPs have extended this idea to situations in which some of the state variables798

are partially observable and others are full observable [216]. It’s worth noting that POMDPs have799

been gaining popularity recently with the emergence of efficient point based value iteration solvers800

like SARSOP [217]. Prior to the emergence of SARSOP and other popular approximation algorithms,801

POMDPs were often avoided in robotics because solving POMDPs exactly is computationally802

intractable and the framework scales poorly with increasing number of states and increasing planning803

horizon [218]. Recent research has also targeted means to apply POMDP to continuous spaces [219].804

3.4.2. Sampling-based Planning805

Sampling-based methods rely on random sampling of continuous spaces, and the generation of806

a feasible trajectory graph (also referred to as a tree or roadmap) where feasibility is verified through807

collision checking of nodes and edges to connect these nodes. Roadmaps generated should ideally808

provide good coverage and connectivity of all obstacle-free spaces. Paths over the roadmap are then809

used to construct solutions to the original motion planning problem. Sampling-based algorithms810

are popular for their guarantees of probabilistic completeness, that is to say that given sufficient time811

to check an infinite number of samples, the probability that a solution will be found if it exists812

converges to one. While sampling-based algorithms are generally applied over continuous spaces,813

it should be noted that some discretization typically occurs in collision checking, especially along814

edge connections in the roadmap.815

Variants of sampling-based algorithms primarily differ in the method by which a search tree is816

generated. Probabilistic RoadMaps (PRM) [210,220] and Rapidly-exploring Random Trees (RRT) [221,817

222] are perhaps two of the most influential sampling-based algorithms, each of which have been818

popular subjects of robotics research with many variants suggested. PRM is a multi-query method819

which builds and maintains multiple graphs simultaneously, and has been shown particularly820

effective in planning in high-dimension spaces [220]. RRT in contrast seeks to rapidly expand a single821

graph, which is suitable for many mobile robotics applications where the map is not well known a822

priori due to the presence of dynamic obstacles and limited sensor coverage concentrated around the823

robot’s current location.824

In many applications, besides completeness guarantees and efficiency in finding a solution, the825

quality of the returned solutions is also important. While an initial solution might be found quickly826

in many cases, the algorithms are typically run for a longer period of time to allow for better solutions827

to be found based on some heuristics. Some works have proposed to bias tree growth toward regions828

that resulted in lower cost solutions [223]. Many sampling-based planners and variants of PRM829

and RRT have since been proposed. A comprehensive evaluation of many popular planners was830

presented in [208], where many popular planners were not only compared on a basis of computational831

complexity and completeness, but also on optimality. The authors showed that the popular PRM832

and RRT algorithms are actually asymptotically sub-optimal, and proposed asymptotically optimal833

variants, PRM* and RRT*. Other asymptotically optimal planners have since been suggested, such834

as Fast Marching Trees (FMT*) [224] and Stable Sparse Trees (SST*) [225], both of which claim speed835

improvement over RRT*.836

3.5. Planning in Dynamic Environments837

Many operating environments are not static, and are therefore not known a priori. In an838

urban environment, the traffic moves, road detours and closures occur for construction or accident839

cleanup, and views are frequently obstructed. The robot must constantly perceive new changes840
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in the environment and be able to react while accounting for several uncertainties. Uncertainties841

arise from perception sensor accuracy, localization accuracy, environment changes, and control policy842

execution [226–233]. But in application, perhaps the largest source of uncertainty is the uncertainty in843

surrounding obstacles’ movements.844

3.5.1. Decision Making Structures for Obstacle Avoidance845

An approach taken by many DARPA Urban Challenge vehicles was to monitor regions along846

the intended path for potential obstacle collisions, where these regions would be labeled as “critical847

zones" [185], or merge zones at intersection, and checked against the trajectories of all nearby848

vehicles to determine a “time to collision." Typically, if a collision was seen as imminent, the vehicle849

would slow or stop accordingly, which was acceptable behavior for crossing and merging at many850

intersections [191], though perhaps overly conservative in other situations. In [234], the lane ahead851

was checked for presence of a vehicle traveling in the wrong direction on a collision path, where852

if triggered, a “defensive driving" maneuver would be executed to pull off the lane to the right853

side and stop. When defensive driving behavior was tested in other vehicles, the performance was854

unsatisfactory in that the oncoming vehicle had to stop before the autonomous vehicle would move855

to navigate around it [189]. The approaches had an advantage of computational simplicity in that856

they planned in a low dimensional space neglecting the time dimension, but the resulting behaviors857

were overly simplistic in that a deterministic set behavior was executed without heuristic weighting858

of alternative actions or explicit consideration for environment evolution given the chosen course of859

action. Nevertheless, recent works have still continued to use behavioral level decision making for860

obstacle avoidance, especially to handle difficult maneuvers such as lane changing [199].861

Other stochastic decision making structures, such as Partially Observable Markov Decision862

Processes (POMDP), can explicitly model uncertainties in vehicle controls and obstacle movements863

and have been applied with success in some complex scenarios [214], but these methods can be864

difficult to generalize and required discretization of the state space and vehicle controls.865

3.5.2. Planning in Space-Time866

To better account for obstacle movement, it is necessary to include time as a dimension in the867

configuration space, which increases the problem complexity. Furthermore, while instantaneous868

position and velocity of obstacles may be perceived, it is yet difficult to ascertain future obstacle869

trajectories. Prior approaches have aimed to use simple assumptions, such as constant velocity870

trajectory, in predicting obstacle movement, with errors accounted for by rapid iterative re-planning.871

Other more conservative approaches have aimed to account for variations in obstacle trajectory by872

bounding larger obstacle-occupied sub-spaces within the configuration space, within which samples873

are rejected by the planner [235,236].874

Given a situation in which the instantaneous position and velocity of obstacles can be observed,875

it logically follows that future obstacle trajectories can be predicted. The common assumption of876

deterministic constant velocity requires frequent verification or correction with each new observation.877

Another method is to assume a bounded velocity on obstacles and represent them as conical878

volumes in space-time, thus reducing the need for observation updating and re-planning [235].879

Other assumptions can be applied to obstacles as well, such as static assumption, constant velocity880

assumption, bounded velocity, and bounded acceleration, each of which yields a bounded volume of881

a different shape in space-time [236]. A visualization of <2 configuration-space obstacle trajectory882

predictions over space-time is shown in Figure 4. A naive assumption would be to ignore the883

uncertainty in the prediction of an obstacle’s trajectory, in which case the obstacle bounded space884

does not grow over time (left two cases in Figure 4). A more conservative approach would be to885

assume a larger bounded area of possible obstacle occupancy, where the obstacle space bounds grow886

over time according to assumed limitations on the obstacle’s velocity and or acceleration (right two887

cases in Figure 4).888
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Figure 4. Obstacles as space-time volumes in <2 × Time space [236]. Time is shown in vertical axis.
When accounting for uncertainty, obstacle size grows with respect to time.

3.5.3. Control Space Obstacle Representations889

Rather than check for collisions directly in the robot’s configuration space, another popular890

approach is to directly plan in the control space by prohibiting certain control actions which are891

predicted to lead to collision. For example, the velocity obstacles method assumes that obstacles892

will maintain their observed trajectories and forbids a robot from choosing relative velocities that893

would lead to collision with the obstacle’s current trajectory [237]. This was generally applied894

to circular, holonomic robots, but due to the ease of computation it has gained popularity in895

multi-robot planning, with proposed Reciprocal Velocity Obstacles [238]. Recent extensions to the896

velocity obstacles method have further incorporated acceleration constraints [239], and adjustments897

for nonholonomic robots [240].898

3.6. Planning Subject to Differential Constraints899

Motion planning is ultimately a high-level control problem. In practice, control limitations900

may be ignored to various degrees in the motion planner in the name of simplicity or reduction901

of computational burden, however poor accounting for constraints on the robot motion during the902

planning phase can lead to high control errors and result in trajectory inefficiencies and/or hazardous903

operations. Trajectories with longer path length which can be followed closely might have shorter904

execution times than shorter paths which are more difficult to follow in reality. Discrepancies between905

the planned trajectory and the executed trajectory present a danger since this lessens the validity906

of collision checking during the planning phase. Paths can be generated from directly sampling907

admissible controls [241], however these methods do not optimize paths through tree rewiring, and908

popular asymptotically optimal planners, such as RRT* [208] require sampling from the configuration909

space. Incorporating differential constraints into state-sampling planners is still a challenging matter,910

and requires a steering function to draw an optimal path between two given states which obeys911

control constraints (if such a path exists), as well as efficient querying methods to tell whether a912

sampled state is reachable from a potential parent state.913

One of the most fundamental differential constraints in a system is the evolution of time, where914

time t must increase at a constant rate ṫ = 1. Whether or not time is explicitly included as a state915

parameter, other state parameters will typically have differential constraints with respect to time,916

such as velocity and/or acceleration limits. Robot differential constraints are applied to generate917

velocity profiles, which may be solved for in a decoupled manner only over the chosen geometric path918

[242,243], or in a direct integrated manner simultaneously with geometric path solving over every919

connection in the tree as it is built [209,241,244–246]. Turning radius limitations are also common,920

where paths for car-like models are often solved through Dubins curves [247] or Reeds-Shepp curves921

[248], which are proven to have shortest distance given a minimum turning radius, though more922
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sophisticated methods exist which also consider a weighted control effort heuristic [245]. Decoupled923

differential constraint handling can result in very inefficient trajectories or failure to find a trajectory924

due to the decoupling. Conversely, direct integrated differential constraint handling can overcome925

these shortcomings but is more computationally complex.926

State sampling can be made more efficient by limiting the states that are sampled to only927

those from within a set of states known to be reachable from the initial condition given the robot’s928

kinodynamic constraints applied to an obstacle free environment. Likewise it is only beneficial to929

check for connectivity between neighboring states when they fall within each other’s reachable sets;930

checking any states that are nearby by Euclidean distance metric but not reachable within a short931

period of time given kinodynamic constraints is a waste of computational effort. Adding Reachability932

Guidance (RG) to state sampling and Nearest Neighbor (NN) searching can provide significant933

efficiency boosts to planning speed, especially for systems where motion is highly constrained or934

the motion checking cost is high, and the standard naive approaches of uniform sampling over935

a hyperrectangle and NN searching by Euclidean distance metric would otherwise result in slow936

planner performance.937

Several recent works have presented analytical approaches to incorporate RG into motion938

planning. The asymptotic optimality of RRT* was shown to extend to a reachability guided variant939

where the reachable subspace was represented as a hyperrectangle derived from the linearized940

dynamics approximation of a system through the Ball Box Theorem presented in [244], where941

the “box" was an under-approximation of the true reachable subspace. A similar approach was942

taken in [246] to prove asymptotic optimality in differential constraint handling variants of PRM943

(Probabilistic RoadMaps) and FMT (Fast Marching Tree). Another asymptotically optimal sampling944

based algorithm to handle differential constraints, Goal-Rooted Feedback Motion Tree (GR-FMT)945

was presented in [249], limited in application to controllable linear systems with linear constraints.946

An analytical method for solving a two point boundary value problem subject to kinodynamic947

constraints was presented in [245], which could be used for finding optimal state-to-state connections948

and NN searching but was limited to systems with linear dynamics.949

A machine learning approach was taken in [250] to query for whether a state was reachable from950

a given base state, though this method required applying a Support Vector Machine (SVM) classifier951

over a feature set of 36 features for the Dubins car model, where online solving for 36 features could952

be relatively computationally expensive.953

The Reachability Guided RRT planner presented in [251] relied on construction of Voronoi954

diagrams to build approximations of reachable sets rooted from each graph node for sampling955

biasing, where Euclidean distance metric was still used for NN searching. This method may not easily956

be extended to higher dimensional spaces, as Voronoi diagrams are then no longer easily constructed.957

There are also relatively few planning methods that have been demonstrated to be effective for958

solving over a configuration space with an appended time dimension. Early works explored control959

sampling approaches [241], and recent state sampling works have made model simplifications to960

handle the differential constraints in an online manner, such as keeping to a constant ego robot961

speed [252]. Others have performed planning by graph search over a discrete, time-bounded lattice962

structure built from motion primitives [253], or a grid cell decomposition of the state space [254],963

though these methods loose the benefits of sampling based approaches (which are less limited in964

resolution, and have potential for rewiring and optimization).965

3.7. Incremental Planning and Replanning966

Limited perception range and the dynamic nature of operating environments are common967

challenges for autonomous vehicle planning. The sensing range of the mobile robot is typically968

limited not only by sensor specifications, but also reduced by view obstruction in the presence969

of obstacles. It is often the case that the robot will not be able to perceive the entire route from970

a start location to goal location at any one specific instant of time. Thus the robot will need to971
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generate incremental plans to follow trajectories which lead to forward progress towards the robot’s972

ultimate goal location. Furthermore, as the robot progressively executes its planned trajectory, other973

moving agents will have their own goals in mind and may move unexpectedly. Given a substantial974

environment change, robot trajectories that were believed to be safe at a prior time instance may not975

longer be safe at a subsequent time instance. Replanning is then necessary to adjust for dynamic976

changes to the environment.977

Incremental planning requires a means of incrementally generating sub-goals, or otherwise978

choosing the best trajectory from amongst a set of possible trajectories based on some heuristics.979

A new plan must be generated at least as often as a new sub-goal is defined. In [243], a finite980

state machine generates new sub-goals for a sampling based replanner only when the robot was981

forced to come to a stop due to path blockage, where each subgoal was set at a predefined distance982

ahead along the predefined path. In [255], no sub-goals were defined, nor was there a predefined983

path to utilize, but rather the best choice trajectories were decided based on a combined weighted984

heuristic of trajectory execution time and distance to goal from the end trajectory state. [255] applied985

a constant rate replanning timer, where each current solution plan was executed concurrently while986

the subsequent plan was being generated, and each newly planned trajectory would be rooted from987

an anticipated committed pose given the previous committed solution trajectory. Note that in a988

Mobility-on-Demand (MoD)2 context, a mission planner should be able to provide a predefined path989

which leads from a starting point to an end destination based on a passenger service request, and the990

presence of a predefined path can help to overcome dangers of getting stuck due to local minima.991

Iteratively replanning to generate new solution trajectories presents a potential opportunity to992

carry over knowledge from previous planning iterations to subsequent planning iterations. While of993

course each new plan could start from scratch, better solutions may be found faster if prior planning994

information is well utilized. For example, sampling could be biased to sample near waypoints995

along the previously chosen solution path, as with Extended RRT (ERRT) [256]. Other works have996

suggested redoing collision-checks over the entire planning tree, as in Dynamic RRT (DRRT) [257],997

where the tree structure was utilized to trim child “branches” once a parent state was found to be998

no longer valid, and sampling is biased towards trimmed regions. Recently, a replanning variant999

of RRT* was presented, RRTX [258], which trims the previous planning iteration’s planning tree in1000

similar fashion to DRRT, but furthermore efficiently reconnects disconnected branches to other parts1001

of the tree and maintains the rewiring principal of RRT* responsible for asymptotic optimality.1002

Safety mechanisms should also be carefully designed considering that each planning cycle1003

requires a finite time for computation and the environment may change during that time (e.g.1004

obstacles may change trajectories). Several works have prescribed passive safety mechanisms to1005

reduce speed in response to obstacle presence, where passive safety refers to the ability to avoid1006

collision while the robot is in motion (escaping from a hostile agent is a more advanced planning1007

topic). In [259], spatial path planning was decoupled from velocity planning, and a “Dynamic1008

Virtual Bumper” approach would prescribe reduced speed based on the proximity of the nearest1009

obstacle as measured by a weighted longitudinal and lateral offset from the desired path. Moving1010

obstacles were treated as enlarged static obstacles in [259], where the obstacles were assumed to1011

occupy the area traced by their current constant velocity trajectory over a short time frame in addition1012

to their current spatial location. While decoupled approaches are generally simpler to implement,1013

they may give rise to inefficiencies, or even failure to find a solution when one exists by integrated1014

planning problem formulation. Several other trajectory planning methods which consider spatial1015

paths and velocity in an integrated manner were benchmarked for safety evaluation in [260], where1016

2 Mobility-on-Demand (MoD) refers to vehicle sharing schemes whereby passenger services are provided to customers
throughout a city with instant booking of vehicles available. A distributed MoD fleet is meant to provide responsive “first
and last mile” transportation (short connections to rapid transit systems from unserviced areas), or other short distance
trips, thereby reducing the need for private vehicle ownership by increasing public transportation accessibility.
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Inevitable Collision State Avoidance (ICS-AVOID) [261], was deemed to outperform Non-Linear1017

Velocity Obstacles (NLVO) [262] and Time-Varying Dynamic Window [263]. ICS-AVOID maintained1018

a finite control set kernel to test over each trajectory’s end state to ensure that no executed trajectory1019

would end in an ICS [261].1020

4. Control1021

The execution competency of an autonomous system, also often referred to as motion control,1022

is the process of converting intentions into actions; its main purpose is to execute the planned1023

intentions by providing necessary inputs to the hardware level that will generate the desired motions.1024

Controllers map the interaction in the real world in terms of forces, and energy, while the cognitive1025

navigation and planning algorithms in an autonomous system are usually concerned with the1026

velocity and position of the vehicle with respect to its environment. Measurements inside the control1027

system can be used to determine how well the system is behaving, and therefore the controller can1028

react to reject disturbances and alter the dynamics of the system to the desired state. Models of the1029

system can be used to describe the desired motion in greater detail, which is essential for satisfactory1030

motion execution.1031

4.1. Classical Control1032

Feedback control is the most common controller structure found in many applications. Feedback1033

control uses the measured system response and actively compensates for any deviations from the1034

desired behavior. Feedback control can reduce the negative effects of parameter changes, modelling1035

errors, as well as unwanted disturbances. Feedback control can also modify the transient behavior of1036

a system, as well as the effects of measurement noise.1037

The most common form of classical feedback control is the Proportional-Integral-Derivative1038

(PID) controller. The PID controller is the most widely used controller in the process control industry.1039

The concept of PID control is relatively simple. It requires no system model, and the control law is1040

based on the error signal as:1041

u(t) = kd ė + kpe + ki

∫
e(t)dt (2)

where e is the error signal, kp, ki ,and kd are the proportional, integral, and derivative gains of the1042

controller, respectively.1043

However, the use of only feedback terms in a controller may suffer from several limitations. The1044

first significant limitation of a feedback only controller is that it has delayed response to errors, as1045

it only responds to errors as they occur. Purely feedback controllers also suffer from the problem of1046

coupled response, as the response to disturbances, modelling error, and measurement noise are all1047

computed by the same mechanism. It is more logical then to manipulate the response to a reference1048

independently from the response to errors.1049

Another degree of freedom can be added to the controller by including a feedforward term to the1050

controller, where this controller architecture is shown in Fig. 5. The addition of a feedforward term1051

in the controller can help to overcome the limitations of feedback control. The feedforward term is1052

added to the control signal without considering any measurement of the controlled system. However,1053

the feedforward term may involve the measurement of disturbances, etc. Designing a feedforward1054

control requires a more complete understanding of the physical system, and therefore, oftentimes, a1055

model reference is used for the feedforward controller. The method of combining a feedforward and1056

a feedback term in the controller is also known as two degree of freedom controller.1057

Table 1 summarizes the roles of feedforward and feedback control[143].1058

State space control, often referred to as modern control, is a technique that tries to control the1059

entire vector of the system as a unit by examining the states of the system. The field of state space1060
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Figure 5. Two Degree of Freedom Controller

Table 1. Feedforward vs Feedback Control

Feedback Feedforward
Removes Unpredictable Errors and Disturbances (+) yes (-) no
Removes Predictable Errors and Disturbances (-) no (+) yes
Removes Errors and Disturbances Before They Happen (-) no (+) yes
Requires Model of a System (+) no (-) yes
Affects Stability of the System (-) yes (+) no

control is a very large field and there is still much active ongoing research in this area. A linear state1061

space model can be written as:1062

˙x(t) = A(t)x(t) + B(t)u(t)y(t) = C(t)x(t) + D(t)u(t) (3)

where x(t) is the system state vector, u(t) is the control input vector, and y(t) is the output of the1063

system.1064

The observations in an autonomous system are mostly nonlinear, and therefore a linear model1065

of the nonlinear system may have to be produced by first linearizing the state space equation of the1066

system.1067

˙x(t) = f (x(t), u(t))y(t) = h(x(t), u(t)) (4)

The two degree of freedom controller can also be applied to nonlinear systems. Feedforward is1068

used to generate a reference trajectory, while the feedback is used to compensate for disturbances and1069

errors.1070

The nonlinear system can be linearized about a reference trajectory xr(t) to produce linearized1071

error dynamics.1072

δ ˙x(t) = A(t)δx(t) + B(t)δu(t)δy(t) = C(t)δx(t) + D(t)δu(t) (5)

where A, B, C, and D are the appropriate Jacobians. If there exists a trajectory generation process1073

that can be designed to produce a reference input ur(t), such that ur(t) generates a feasible trajectory1074

which satisfies the nonlinear system dynamics of the system, state space controllers can be configured1075

to perform feedback compensation for the linearized error dynamics.1076

4.2. Model Predictive Control1077

Autonomous systems need motion models for planning and prediction purposes. Models can1078

also be used in control execution. A control approach which uses system modelling to optimize1079
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Figure 6. Basic Structure of Model Predictive Control

over a forward time horizon is commonly referred to in the literature as Model Predictive Control1080

(MPC). The basic structure of MPC is shown in Fig.6. Model predictive control has been developed1081

to integrate the performance of optimal control and the robustness of robust control. Typically the1082

prediction is performed for a short time horizon called the prediction horizon, where the goal of1083

the model predictive controller is to compute the optimal solution over this prediction horizon. The1084

model, and thus the controller can be changed online to adapt to different conditions.1085

Model predictive control has seen tremendous success in the industrial process control1086

applications, due mainly to its simple concept and its ability to handle complicated process models1087

with input constraints and nonlinearities [264].1088

Model predictive control has several other attractive features, such as the simplicity of designing1089

a multi variable feedback controller. It also allows for easy specification of system inputs, states,1090

and outputs that must be enforced by the controller. MPC furthermore permits specification of an1091

objective function to optimize the control effort. MPC can also address time delay, rejecting measured1092

and unmeasured disturbances and taking advantage of previously stored information of expected1093

future information. This feature can be very useful for repeated tasks, such as following a fixed path.1094

MPC embodies both optimization and feedback adjustment, thus mimicking natural processes.1095

Model predictive control has also been widely adapted to automotive applications [265]. The1096

operations of the overall vehicle system must be optimal throughout the operating range in order1097

to increase the fuel economy, emission, and safety performance. However, applying a model1098

predictive controller in an automotive system meets different challenges than those faced in the1099

process control industry. In the process control industry, the sampling time is relatively longer, and1100

the computing resources available are ample. The sampling period for processes in an automobile1101

is a few milliseconds, and the amount of computing resources available is limited due to space1102

constraints. Advances in processor speed and memory, as well as development of new algorithms1103

is therefore important in pushing the adoption of MPC into greater prevalence in the automotive1104

industry.1105

MPC has already been applied in several automotive control applications, including traction1106

control [266], braking and steering [267,268], lane keeping [269] etc. Model predictive techniques1107

have also been applied to the trajectory tracking problem in various works [270–276].1108
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The general model predictive control problem is formulated as

minimize
U(t)

F(x(N|t)) +
N−1

∑
k=0

L(x(k|t), y(k|t), u(k|t)) (6a)

subject to x(k + 1|t) = f (x(k|t), u(k|t)) (6b)

y(k|t) = h(x(k|t), u(k|t)) (6c)

xmin ≤ x(k|t) ≤ xmax, k = 1, · · · , Nc (6d)

ymin ≤ y(k|t) ≤ ymax, k = 1, · · · , Nc (6e)

umin ≤ u(k|t) ≤ umax, k = 1, · · · , Ncu (6f)

x(0|t) = x(t) (6g)

u(k|t) = κ(x(k|t)) k = Nu, · · · , N − 1 (6h)

where t is the discrete time index. The notation for a vector v(h|t) denotes the value for v predicted1109

at h time steps as referenced from time t, based on information up to t. Equations 6b and 6c are the1110

discrete time model of the system dynamics with sampling period Ts where x ∈ <n is the system’s1111

state, u ∈ <m is the control input, and y ∈ <p is the system output. The optimizer is the control1112

input sequence U(t) = (u(0|t), · · · , u(N − 1|t)), where N is the prediction horizon. Similar to the1113

optimal control formulation, the cost function represents the performance objective that consists of1114

the stage cost L and the terminal cost F. The constraints on the states and outputs are enforced along1115

the horizons Nc and Ncu, respectively. The control horizon Nu is given as the number of optimized1116

steps before the terminal control law is applied.1117

At any control cycle t, the model predictive control strategy for the general problem operates as1118

follows: system outputs are measured and the state x(t) is estimated. This state estimation is acquired1119

to initialize Equation 6a and impose the limit in 6g. Once the MPC optimization problem is solved1120

and the optimal input sequence U∗(t) is obtained, the first element of the optimal input sequence is1121

then applied to the system u(t) = u∗(0|t). At the following cycle, the process is repeated using the1122

newly acquired state estimate, thus applying the feedback.1123

4.3. Trajectory Generation and Tracking1124

There are two general approaches to trajectory generation with known path information. The1125

first approach uses the optimization method to both generate a trajectory and track it simultaneously,1126

while another approach is to decouple trajectory generation and tracking.1127

4.3.1. Combined Trajectory Generation and Tracking1128

The combined approach integrates both the generation and execution/tracking tasks into one1129

optimization problem. This approach is often applied for optimal time application such as in [277].1130

Running the optimization problem in real time is a challenge due to limited processing power, and it1131

may not be advantageous for planning in a complex environment.1132

4.3.2. Separate Trajectory Generation and Tracking1133

4.3.2.1. Trajectory Generation1134

The problem of trajectory generation is to find an entire control input u(t), which corresponds to1135

some desired state trajectory x(t).1136

The trajectory generation problem can be posed as a two point boundary value problem. The1137

boundary conditions are typically the constraints that include a starting state x(t0) = x0 and the final1138

goal state x(t f ) = x f , with the system dynamics ẋ = f (x, u) as an added constraint. A trajectory is1139
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defined as infeasible if there is no control input u(t) for a given state trajectory x(t) which satisfies1140

the boundary conditions.1141

A trajectory is a representation of a motion confined to some time interval. This could be a1142

specification of the state vector over an interval
{

x(t)|(t0, t < t f )
}

, or a specification of the input1143

over an interval
{

u(t)|(t0, t < t f )
}

.1144

The problem of trajectory generation for an autonomous vehicle can be solved with multiple1145

techniques. However, the literature for trajectory generation can generally be classified into two1146

approaches: (i) sensor based and (ii) dynamics based. The first approach is more oriented towards1147

the field of robotics. Robotics researchers have been tackling the problem of trajectory generation1148

for decades, where it has been applied in both industrial robots and autonomous mobile robots.1149

The sensor based approach generally concentrates on integrating the perception of the environment,1150

without taking much of the vehicle dynamics into account.1151

Another approach to trajectory generation for an autonomous vehicle is based more on vehicle1152

dynamics. Various optimization methods for finding an optimal trajectory have been proposed in1153

the literature, such as the application of genetic algorithms, and gradient descent method. A deep1154

understanding in vehicle dynamics and control can push the limits of the autonomous vehicle, as1155

demonstrated in [278]. Research in trajectory generation and tracking is also pursued for application1156

in semi-autonomous vehicles, for more advanced driver’s assistance systems, such as advanced1157

collision avoidance with stability control [279–281].1158

A good balance between the sensor based trajectory planning and the vehicle dynamics control1159

methods should be considered to fully realize the goal of autonomous vehicle control systems: to1160

ensure that the vehicle can track the desired trajectory well, and operate safely, comfortably, and1161

efficiently for all potential operating complexities and velocities.1162

4.3.2.2. Trajectory Tracking1163

In this section, an overview of the available path and trajectory tracking methods will be1164

discussed. We consider a path to be a geometric representation of a plan to move from a start pose to a1165

goal pose, whereas a trajectory additionally includes the velocity information of the motion. Various1166

methods have been presented in the literature. Two of the most popular types are (i) geometric1167

methods and (ii) model based methods [282]. Controllers derived from model based path tracking1168

methods use a kinematic and/or dynamic model of the vehicle. Kinematic model based controllers1169

perform well at low speed applications, but the error increases as the vehicle speed and curvature1170

rate of the path increases. On the other hand, the dynamic model based controllers tend to perform1171

well for higher speed driving applications such as autonomous highway driving, but also tend to1172

cut corners as the vehicle rapidly accelerates and decelerates and pursues paths with large curvature.1173

Model based methods require the path to be continuous, and are not robust to disturbances and large1174

lateral offsets.1175

4.3.2.3. Geometric Path Tracking1176

Geometric path tracking algorithms use simple geometric relations to derive steering control1177

laws. These techniques utilize look ahead distance to measure error ahead of the vehicle and1178

their complexity range from simple circular arc calculations to much more sophisticated geometric1179

theorems, such as the vector pursuit method[283].1180

One of the most popular geometric path tracking algorithms is the pure pursuit path tracking1181

algorithm. The pure pursuit algorithm pursues a point along the path that is located at a certain1182

lookahead distance away from the vehicle’s current position. The algorithm is relatively simple and1183

easy to implement, and is robust to disturbances and large lateral error. The input to the algorithm1184

is also waypoints, rather than smooth curves, and is therefore less susceptible to discretization1185

related issues. This algorithm still suffers from corner cutting and steady state error problems if1186
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the lookahead distance selected is not appropriate, especially at higher speed, when the lookahead1187

distance increases (lookahead distance is generally set as an increasing function with respect to1188

speed).1189

In order to avoid constricting the way that the paths are generated, the paths shall be represented1190

in a piece wise linear way [284]. By this principle, a smooth trajectory having continuous first and1191

second order derivatives, e.g. a Bezier curve should be represented as a sequence of dense points,1192

enabling a wider range of potential tracking algorithms to be applied. A point is joined to the1193

following point in the path by linear path segments. In order to closely approximate the continuous1194

path, a denser discretization of the path has to be implemented. The discrete nodes are contained in1195

an ordered list, and the waypoints are tracked sequentially (waypoint i is tracked before waypoint1196

i + 1).1197

The pure pursuit algorithm has a single tunable parameter, the lookahead distance L f w. Using1198

Ackermann steering geometry, the algorithm defines a virtual circular arc that connects the anchor1199

point (the rear axle) to the tracked point found along the path that is located L f w away from the1200

anchor point. A variation of this algorithm has been introduced by [285], where the anchor point is1201

not necessarily selected as the rear axle, but can be located at a distance ε away from the rear axle1202

along xb. However, hereafter, the anchor point will be assumed to be the rear axle. The stability limits1203

of the algorithm has also been studied in [286], and it has been shown that the pure pursuit algorithm1204

is stable for a correct combination of minimum lookahead distance and process delay involved in the1205

system.1206

R

L

Lfw

2η

R

η
(xp(i),yp(i))

Figure 7. Pure pursuit steering geometry

The virtual arc is constrained to be tangential to the velocity vector at the origin of the body fixed1207

frame and to pass through the tracked point found along the path. Referring to Fig. 7 and using the1208

law of sines, the arc’s radius of curvature R can be geometrically computed as:1209

L f w

sin(2η)
=

R
sin(π

2 − η)

L f w

2sin(η)cos(η)
=

R
cos(η)

L f w

sin(η)
= 2R

where R is the turning radius, and η is the lookahead heading. The curvature κ of the arc is defined1210

as:1211
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κ =
2sin(η)

L f w
(7)

And therefore the vehicle’s steering angle δ can be computed by applying the kinematic bicycle
model:

δ = tan−1(κL)

δ(t) = tan−1

(
2Lsin(η(t))

L f w

)
(8)

The lookahead distance is commonly formulated as a function of longitudinal velocity, and1212

saturated at a certain maximum and minimum value, and thus equation (8) can be rewritten as1213

δ(t) = tan−1
(

2Lsin(η(t))
kv(t)

)
(9)

At lower speed, when the lookahead distance is smaller, the vehicle is expected to track the path1214

closely, and oscillatory behavior is also expected; meanwhile at higher velocity, when the lookahead1215

distance is larger, the vehicle is expected to track the path smoothly, however this will result in the1216

cutting corner problem.1217

Since the lookahead distance is a function of the gain k, selecting the appropriate value for the1218

gain will result in significant trade-offs in the tracking performance. On one hand, if the gain k is1219

set to be too low, the algorithm will track a point that is very close to the vehicle’s current pose. As1220

the vehicle’s control may not be perfect, a vehicle tracking a constant curvature path may oscillate1221

between being inside and outside of the curve; this can result in steering control towards the opposite1222

direction, and therefore instability may occur. On the other hand, if the gain k is set to be too large,1223

the opposite effect is expected. The autonomous vehicle is expected to stay inside/outside of the1224

curve for a very long time rather than moving closer and closer to the curvature, and therefore poor1225

tracking performance is expected.1226

Tuning the pure pursuit controller to achieve a good path tracking result which minimizes the1227

corner cutting and overshoot problems can be a tedious and course dependent challenge. One of1228

the main reasons is that the pure pursuit path tracking algorithm does not consider the target path1229

curvature, and the heading of the tracked point along the path. The pure pursuit algorithm simply1230

calculates a circular arc based on the geometry of the vehicle model. Ignoring the vehicle’s lateral1231

dynamics that are more and more influential as the speed increases, which results in discrepancies1232

between the predicted circular arc and the actual travelled circular arc. This dynamic effect can be1233

compensated by increasing the gain k until the circular arc that is computed is of smaller radius than1234

the circular arc of the path at a proportion that would cancel out the dynamic side slip of the vehicle.1235

The Stanley method is another popular geometric steering controller that was first introduced1236

with Stanford University’s entry in the DARPA Urban Challenge[287].1237

Referring to Fig. 8, the Stanley method computes the steering command based on a nonlinear1238

control law which considers the cross track error e f a measured from the center of the front axle of the1239

vehicle to the path at (xp, yp), as measured from the front axle of the vehicle, as well as the heading1240

error θe of the vehicle with respect to the path:1241

θe = θ − θp (10)

where θ is the heading of the vehicle, and θp is the heading of the path. The resulting control law for1242

the steering angle δ can be written as:1243

δ(t) = θe(t) + tan−1

(
ke f a(t)
vx(t)

)
(11)
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(xp(i),yp(i))

efa

θe
δ

Figure 8. Stanley method steering geometry

The second term in equation 11 adjusts the steering angle such that the intended trajectory intersects1244

the path at
vx(t)

k
distance away from the path tangent to (xp, yp), where k is the gain parameter and1245

vx(t) is the instantaneous longitudinal velocity of the vehicle.1246

The algorithm has been proven to exponentially converge to zero cross track error. Compared to1247

the pure pursuit method, the Stanley method, has better tracking results and does not cut corners as1248

it uses cross track error and yaw heading error information of the vehicle with respect to the path as1249

measured from the front axle rather than pursuing a point that is located at a certain distance ahead1250

of the vehicle. It also performs better at high speed driving as compared against the pure pursuit1251

method.1252

However, the Stanley method is not as robust to disturbances, and has higher tendency for1253

oscillation as compared to the pure pursuit method, as it only considers the current cross track error1254

rather than considering the path ahead. In instances where the controller is not ideal, tracking a1255

constant curvature path with the Stanley method may result in similar symptoms as tracking the path1256

with a pure pursuit controller with small lookahead distance. The vehicle’s position may oscillate1257

between the inside and the outside of the curvature, and the computed steering angle may oscillate1258

between positive and negative values (left or right). The Stanley method also requires continuous1259

curvature path rather than discrete waypoints, as it considers the cross track error in a continuous1260

manner, which makes it susceptible to discretization related problems [288].1261

4.3.2.4. Trajectory Tracking with a Model1262

For a given path/trajectory there are several model based tracking methods to choose from. At1263

slower speeds, vehicle kinematics models or linearized dynamics are often used. When attempting1264

stability in control at higher velocity, a more complex model is usually required.1265

De Luca, Oriolo, and Samson [289] have proposed a kinematic car controller based on the1266

kinematic bicycle model. This method can apply not only to car like robots, but also to many other1267

kinematic models for various mobile robots.1268

Referring to Fig. 9, De Luca et al. defined the path according to a function of its length s. Let
θp(s) represent the angle between the path tangent at (xp, yp) and the global x axis. Orientation error
θe of the vehicle with respect to the path is then defined as

θe = θ − θp(s)
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(xp,yp)
era

θ

δ

θp
s

Figure 9. Path representation for kinematic car model as proposed in [289]

and the curvature along the path is defined as

κ(s) =
eraθp(s)

ds

multiplying both sides by ṡ1269

θ̇p(s) = κ(s)ṡ

Given that cross track error era is the orthogonal distance from the anchor point (midpoint of the rear
axle) to the path, the quantities ṡ and ėra can be expressed as

ṡ = vcos(θe) + θ̇pera

˙era = vsin(θe)

The kinematic model in path coordinates can now be written as


ṡ

ėra

θ̇e

δ̇

 =


cos(θe)

1−ėraκ(s)
sin(θe)

( tanδ
L )− κ(s)cos(θe)

1−ėraκ(s)
0

 v


0
0
0
1

 δ̇ (12)

Canonical forms for kinematic models of nonholonomic systems are commonly used in1270

controller design. One particular canonical structure that is used in deriving the controller is the1271

chained form, intended for general two input systems such as the driftless kinematic car model. The1272

chained form can be written as:1273
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ẋ1 = u1 (13)

ẋ2 = u2 (14)

ẋ3 = x2u1 (15)
... (16)

ẋn = xn−1u1 (17)

where x represents state variable, and u represents input to the system. The problem can be further1274

simplified as a single input system by assigning the first control input u1 to be a function of time.1275

Murray in [290] has proposed a way of converting the kinematic car model into the chained form, by1276

a change of coordinates x = φ(q) and invertible transformation v = β(q)u. The kinematic car model1277

can then be put into chained form by using the following coordinate change:1278

x1 = s

x2 = κ′(s)eratan(θe)− κ(s)(1− eraκ(s))
1 + sin2(θe)

cos2(θe)
+

(1− eraκ(s))tan(δ)
Lcos3(θe)

x3 = (1− eraκ(s))tan(θe)

x4 = era

and the input transformation

v =
1− eraκ(s)

cos(θe)
u1

δ̇ = α2(u2 − α1u1)

where α1 and α2 are defined as

α1 =
∂x2

∂s
+

∂x2

∂era
(1− eraκ(s))tan(θe) +

∂x2

∂θe

(
tan(δ)(1− eraκ(s))

Lcos(θe)
− κ(s)

)
α2 =

Lcos3(θe)cos2(δ)

(1− eraκ(s))2

De Luca et al then proposed the following smooth feedback stabilization method. Their method1279

takes advantage of the internal structure of the chained form and breaks the design solution into two1280

phases. The first phase assumes that one control input is given, while the additional control input is1281

used to stabilize the remaining sub-vector of the system state. The second phase consists of specifying1282

the first control input to guarantee convergence and stability.1283

The variables of the chained form are reordered for simplicity as1284

χ = (χ1, χ2, χ3, χ4) = (x1, x2, x3, x4)

so the the chained form system can be written as

χ̇1 = u1 (18)

χ̇2 = χ3u1 (19)

χ̇3 = χ4u1 (20)

χ̇4 = u2 (21)
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The ordering of x2 and x4 is made such that the position of the rear axle is (χ1, χ2). Let χ =1285

(χ1, χ2), where χ2 = (χ2, χ3, χ4), and the goal is to stabilize χ2 to zero. χ1 represents the arc length1286

s along the path, while χ2 represents the cross track error era, and χ3, χ4 are related to the steering1287

angle and orientation error of the tracked path respectively.1288

If u1 is assigned as a function of time, the chained system can be written as1289

˙̃χ2 = 0

χ̇2 =

0 u1(t) 0
0 0 u1(t)
0 0 0

 χ2 +

0
0
1

 u2

with

χ̃1 = χ1 −
∫ t

0
u1(t)dt

When u1 is assigned a priori, χ̃1 is not controllable. However, the structure of the differential
equation for χ2 is similar to the controllable canonical form that is widely studied in state space
control. The system also becomes time invariant as u1 is set at a constant non-zero value. If u1 is
a piecewise continuous, bounded, and strictly positive/negative function, then χ2 is controllable.
Under this assumption

d
dt

x1 =
d

dχ1
χ̇1 =

d
dχ1

u1

sign(u1)
d

dχ1
χ̇1 =

1
|u1|

.
d
dt

and thus the state space equation can be rewritten as

χ
[1]
2 = sign(u1)χ3 (22)

χ
[1]
3 = sign(u1)χ4 (23)

χ
[1]
4 = sign(u1)u′2 (24)

By applying the definition

χ
[j]
i = sign(u1)

djχi

dχ
j
1

u′2 =
u2

u1

the system has an equivalent input-output representation of

χ
[n−1]
2 = sign(u1)

n−1u′2

and the system is controllable, admitting an exponentially stable linear feedback in the form of

u′2(χ2) = −sign(u1)
n−1

n−1

∑
i=1

kiχ
[i−1]
2

where the gain k1 > 0 for stability, and the time varying control

u2(χ2, t) = u1(t)u′2(χ2)
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is globally asymptotically stable at the origin χ2 = 0.1290

The goal of the path tracking problem is to bring χ2, χ3, andχ4 down to zero, the solution to the1291

path tracking problem for an Ackermann steered vehicle for any piecewise continuous, bounded and1292

strictly positive/negative u1 can be written as:1293

u′2(χ2, χ3, χ4) = −sign(u1) [k1χ2 + k2sign(u1)χ3 + k3χ4]

and the final path tracking feedback control law can be obtained as

u2(χ2, χ3, χ4, t) = −k1|u1(t)|χ2 − k2u1(t)χ3 − k3|u1(t)|χ4

Model predictive techniques have also been applied to trajectory tracking problem. The main1294

challenge with model predictive approaches in trajectory tracking and control is that the nonlinear1295

optimization problem has to be solved several times per second. With recent advances in available1296

computational power, solving nonlinear optimization in real time is now feasible. A few variations1297

of the MPC problem for trajectory tracking that can be found in the literature are as follows:1298

• Path Tracking Model Predictive Controller : with a center of mass based linear model, Kim et1299

al. [291] formulated an MPC problem for a path tracking and steering controller. The resulting1300

integrated model is simulated with a detailed automatic steering model and a vehicle model in1301

CarSim.1302

• Unconstrained MPC with Kinematic Model: by implementing CARIMA models without1303

considering any input and state constraints, the computational burden can be minimized. The1304

time-varying linear quadratic programming approach with no input or state constraints, using1305

a linearized kinematic model, can be used to solve this sub class of problems, as demonstrated1306

in [272].1307

• MPC Trajectory Controller with Dynamic Car Model : A wide array of methods are available1308

in the literature. An approach with nonlinear tire behavior for tracking trajectory on various1309

road conditions is explored in [268], and the simulation results suggest that the vehicle can1310

be stabilized on challenging icy surfaces at a 20 Hz control frequency. The complexity of the1311

model and inadequacy in available computing power at the time of publishing resulted in1312

computational time that was more than the sample time of the system, hence only simulation1313

results are available. The authors explored the linearization of the state of the vehicle about1314

the state at the current time step in [292]. By reducing the complexity of the quadratic1315

programming problem, a more reasonable computing time can be achieved, and the controller1316

has been experimentally validated on challenging icy surfaces for up to 21 m/s driving speed.1317

A linearization based approach was also investigated in [292] based on a single linearization1318

about the state of the vehicle at the current time step. The reduced complexity of solving the1319

quadratic program resulted in acceptable computation time, and successful experimental results1320

are reported for driving in icy conditions at speeds up to 21 m/s.1321

5. Vehicle Cooperation1322

Cooperation between multiple autonomous vehicles (AVs) is possible with the development of1323

vehicular communication. In particular, state estimation can be improved with multiple sources1324

of information gathered from different vehicles. Cooperative state estimation can also improve1325

robustness against communication failure. With future trajectories shared among nearby vehicles,1326

the motion can be coordinated to make navigation safer and smoother for AVs.1327
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5.1. Vehicular Communication1328

Vehicular communication technology has been progressing rapidly, enabling connection1329

between vehicles via wireless networks [293]. The bandwidth and range of wireless communication1330

are increasing rapidly while the latency is being significantly reduced. For example, the1331

communication range of Dedicated Short Range Communications (DSRC) can be up to 1000 meters,1332

allowing a vehicle to connect to nearby vehicles even beyond line-of-sight and field-of-view.1333

Furthermore, the information can be relayed and multi-hop connections are possible, which can1334

significantly increase the connectivity. For vehicular communication, the IEEE 802.11p standard1335

has been designed to allow information exchange between high speed cars, and between vehicles1336

and roadside infrastructure. Many companies, such as Autotalks, Commsignia, Cohda Wireless, and1337

Denso, are already selling their V2V communication devices at affordable prices to the mass market.1338

Other wireless communication technologies, such as 3G, 4G and WiFi, are also suggested in [294–296].1339

The various communication technologies allow AVs to share their sensing information, such1340

as GPS location, turning angle, driving speed, and the states of detected vehicles or pedestrians.1341

This allows AVs to “see” beyond their own line-of-sight and field-of-view [294]. Multiple sources of1342

information from remote vehicles can substantially improve the observability of the nearby vehicles’1343

states since their view points can be very different, and thereby improve environmental awareness.1344

The augmented sensing range will significantly improve driving safety. Meanwhile, planned future1345

trajectories can also be shared so that the prediction of cooperating vehicles’ future positions can1346

be better facilitated. Potential motion conflicts can then be identified and mitigated with motion1347

coordination algorithms, which can guarantee that decisions are jointly feasible.1348

The same communication protocols could also be used for Vehicle to Infrastructure (V2I)1349

communications, where the IEEE 802.11p standard has also seen adoption into DRSC devices1350

intended for intersection handling (broadcasting traffic light information). Besides enabling more1351

robust traditional traffic control for autonomous cars, new V2I devices could be leveraged as1352

suggested in [297] to enable centralized vehicle coordination algorithms to prescribe continuous flow1353

intersection behavior (traffic does not stop, only slows to avoid collision with cross traffic), which1354

would increase the overall traffic throughput rate.1355

5.2. Cooperative Localization1356

It has been found that simply adding the information together from multiple source vehicles1357

is not sufficient, and inconsistent perception results can lead to dangerous driving behaviors [294].1358

Since the vehicles are mobile and their locations are uncertain, their perception results may be1359

“unaligned" or inconsistent. Map merging is proposed to align multiple local sensing maps so that1360

the observations are consistent [295]. Nonetheless, transmitting a local sensing map uses substantial1361

communication resources. A more efficient way is to localize them well on a global map so that1362

sensing information can be accurately projected onto a global map. In this way, perception results1363

would consequently be aligned. The well-aligned observations or perception results allow AVs to1364

have a larger area of environmental understanding, and thereby significantly improve environmental1365

awareness. Also, fusing sensing information can potentially reduce perception uncertainty, increase1366

localization accuracy, and improve state observability. More importantly, the merged information1367

would allow the early detection of possible hazards and thereby allow AVs to have a faster response1368

to avoid dangerous accidents.1369

5.2.1. Vehicle Shape Information Utilization1370

Cooperative localization essentially exploits the correlations, i.e., the joint and relative1371

observations, to further improve localization accuracy cooperatively. The relative observation is often1372

utilized for cooperative localization [298–306]. For example, relative range is measured by via the1373

one-way-travel-time (OWTT) and utilized in cooperative localization [304–306]. The relative bearing1374
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is also measured with a range sensor in [301,303] so that the relative position can be determined. The1375

relative orientation is not considered in cooperative localization, partially because the shapes of the1376

robots are arbitrary and it is difficult to measure relative heading. However, the relative orientation1377

is of great importance for autonomous driving and it would be appealing to have the uncertainty1378

of relative orientation further reduced. An indirect relative pose estimation method is proposed1379

in [307]. Nonetheless, that method requires merging two local maps, which would use substantial1380

computational and communicational resources. For vehicles, their shapes are usually rectangular1381

when projected onto a plane parallel to the ground. When detected by a range sensor, such as a 2D1382

LIDAR sensor, the shape of vehicle is expected to resemble the letter “L". In [308], an efficient L-shape1383

fitting algorithm is proposed to obtain accurate relative poses for cooperative localization.1384

5.2.2. Minimal Sensor Configuration1385

Multi-vehicle cooperative localization has been studied extensively [298–303], where the cited1386

works mainly consider a full sensor configuration for each vehicle. With a full sensor configuration,1387

each vehicle is able to localize independently without any cooperation. However, the number of1388

required sensors could be reduced for a fleet of vehicles that share sensing information. The minimal1389

number of sensors for a fleet of vehicles to simultaneously and continually localize themselves1390

remains to be an open question.1391

Many cooperative localization experiments [298,299,301–303] have been performed indoors or1392

in simulations where features are distinct, sensing error is minor and perception range is small.1393

Madhavan et al. has furthermore conducted outdoor multi-robot localization experiments [300],1394

but the moving speeds of the robots are quite low. Even though promising experimental results1395

have been achieved, they may not extend to outdoor fast moving vehicles. The scalability of1396

cooperative localization using the minimal sensor configuration is proved in [309]. The proposed1397

sensor configuration can be used by autonomous truck convoy systems [310], which can greatly1398

reduce the cost of such convoys.1399

5.2.3. General Framework1400

One of the challenges for cooperative localization is optimal estimation. Transmitting the state1401

estimates for decentralized data fusion will lead to circular inference if special measures are not1402

taken [311]. Circular inference would essentially count the same information multiple times, and1403

thus the resulting estimate is usually biased and overconfident. Covariance Intersection (CI) is1404

a common suboptimal technique used to avoid overconfident estimation [312,313]. An optimal1405

estimation scheme transmits measurements instead of state estimates and builds a pose graph1406

for multi-vehicle cooperative localization [304–306], but is susceptible to communication failure.1407

Communication loss can result in missing some links of the graph, and the pose graph can then break1408

into multiple disconnected subgraphs, which leads to non-uniqueness of the optimal solution. Walls1409

et al. proposed a factor decomposition scheme to recover the odometry factor when packets are lost1410

during transmission [304]. The proposed framework is also able to handle delayed or out-of-sequence1411

packets. The data association is determined by the differences in the transmission signals among the1412

servers, which is usually not applicable to V2V communication. Only relative distance is utilized as1413

the correlation in that framework and each vehicle only receives a subset of all the measurements1414

because of the server-client scheme. In [314], a more general cooperative localization framework is1415

proposed to handle data associations and ambiguities in the relative observations. Besides, relative1416

pose is used as the correlation between vehicles to maximize the usage of the vehicle detection1417

information. The proposed framework is also robust against communication loss, communication1418

delays or out-of-sequence measurements.1419
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5.3. Motion Coordination1420

Sharing future trajectories among AVs can help them to predict dynamic changes in the1421

surrounding environments. Conflicts between future trajectories can be detected in advance and1422

should be resolved in time. Centralized multi-vehicle motion planning is a way to avoid potential1423

collisions in the composite configuration space, which is formed by the Cartesian product of the1424

configuration spaces of individual vehicles [315]. The inherent high complexity hinders these1425

methods from being applicable in real-time multi-vehicle motion planning. Decoupled planning is1426

more efficient, which can be further divided into prioritized planning [316–318] and path-velocity1427

planning [319,320]. Since the path of the vehicle typically follows the lane, the centralized1428

multi-vehicle motion planning to explore all the possible paths may be over-kill. It would be more1429

efficient and applicable to just coordinate the vehicles’ velocities while the vehicles follow fixed paths.1430

A D* search in the coordination diagram was proposed in [320], however, the Euclidean distance1431

metric, being part of the cost formulation, may not have a physical meaning in the coordination1432

diagram. The vehicles’ waiting time would be a more suitable metric of the quality of the solution. In1433

[321], an efficient motion coordination algorithm is presented to resolve conflicts in future trajectories1434

and minimize the total waiting time, where V2V communication is adopted.1435

6. Conclusion1436

Aided by the increase in availability and reduction in cost of both computing power and sensing1437

equipments, autonomous driving technologies have seen rapid progress and maturation in the past1438

couple of decades. This paper has provided a glimpse of the various components that make up1439

an autonomous vehicle software system, and capture some of the currently available state of the1440

art techniques. This paper is by no means a comprehensive survey, as the amount of research and1441

literature in autonomous vehicles has increased significantly in the last decade. However, there are1442

still difficult challenges that have to be solved to not only increase the autonomous driving capabilities1443

of the vehicles, but also to ensure the safety, reliability, and social and legal acceptability aspects of1444

autonomous driving.1445

Environmental perception systems can be made more robust though sensor fusion, where we1446

expect further development in this area to more fully make use of all information provided by the1447

sensors. Also, while newly developed deep learning algorithms for object detection have achieved1448

great performance boosts, they have yet to be extended to operate over fused sensor data from1449

multiple sensor source types.1450

Recent advancements in the field of SLAM has contributed significantly to the localization1451

capabilities of autonomous vehicles. However, the problem of robust automated loop closure is still1452

an active research topic with a lot of open challenges. Another active research topic in the field of1453

vehicle mapping is long-term mapping. Updating the maps with static, topometric, activity and1454

semantic data over time is important in order to ensure that the vehicle can localize itself precisely1455

and consistently with respect to its environment.1456

While impressive capabilities have also been demonstrated in the realm of planning algorithms,1457

we anticipate further advancement to improve real-time planning in dynamic environments. Recent1458

related research is progressing toward better inclusion of robot differential motion constraints and1459

efficient strategies for knowledge retention between subsequent iterations of replanning.1460

There has been significant theoretical progress in the field of autonomous vehicle control in1461

recent years. However, many of the breakthrough results have only been tested in simulation.1462

Ensuring that the autonomous system robustly follows the intention of higher level decision making1463

processes is crucial. Model Predictive Control (MPC) based techniques have been an active research1464

topic in this area, due to its flexibility and performance. Computational time is essential in real1465

time applications, and therefore model selection and MPC problem formulation varies from one1466

application to another.1467
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It has been shown that vehicle cooperation can enable better performance in perception and1468

planning modules, however there is much room for advancement to improve the scalability of1469

multi-vehicle cooperative algorithms. Furthermore, although hardware is being standardized for1470

V2V communications, no standard yet exist for what information content should be passed between1471

vehicles.1472

Autonomous vehicles are complex systems. It is therefore more pragmatic for researchers to1473

compartmentalize the AV software structure and focus on advancement of individual subsystems as1474

part of the whole, realizing new capabilities through improvements to these separate subsystems.1475

A critical but sometimes overlooked challenge in autonomous system research is the seamless1476

integration of all these components, ensuring that the interaction between different software1477

components are meaningful and valid. Due to overall system complexity, it can also be difficult1478

to guarantee that the sum of local process intentions results in the desired final output of the system.1479

Balancing computational resource allotments amongst the various individual processes in the system1480

is also a key challenge.1481

Recognizing the fast pace of research advancement in AVs, we eagerly anticipate the near future1482

developments which will overcome the cited challenges and bring AVs to greater prevalence in urban1483

transportation systems.1484
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