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Abstract— We present a novel autonomous driving system
which uses the road contextual information and intentions of
other road users for urban driving. Unlike highways, urban
environments require the drivers to follow traffic signs and
signals while using their best judgment for anomalous situa-
tions. In such scenarios, a self-driving car needs to understand
and take into account the uncertainties in the environment to
plan and decide its action accordingly. Our planner models
the intentions of the surrounding vehicles leveraging a neural
network, and integrates the road contextual information to
reduce its environment uncertainties and also speed up the
decision making process. We validate our planner in simulation
and in a real urban environment. Our experimental results
show that integrating intention inference and road contextual
information for prediction, planning and decision making help
improve safety and efficiency of our autonomous driving system.

I. INTRODUCTION

We propose a novel autonomous driving system which
uses the road contextual information and intention of other
road users to provide safe and efficient high-level driving
actions for urban driving. Urban environments pose a unique
set of challenges for self-driving cars. Consider a scenario
for overtaking an illegally parked car from the opposite side
of a two-way street with a single lane on each side. In
order to decide whether to overtake the parked car, the ego-
vehicle has to understand the road contextual information
such as the number of lanes, direction of the lane, lane width
and distance to the nearest intersection, etc.. Otherwise,
it can cause severe safety hazards due to misjudgments.
Another challenge in urban driving is the need for long-
term planning while interacting with multiple exo-vehicles.
A driving system has to perform long-horizon planning in
a large state space composed of all neighboring vehicles,
so that the ego-vehicle avoids collisions with them while
efficiently navigating to its goal. The key aspect, in this case,
is to predict the long-term behaviours of exo-vehicles and
plan for the ego-vehicle, accordingly.

We developed a hierarchical prediction model for long-
term planning. At the high level, we model the intentions
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Fig. 1: Intention and trajectory prediction of the exo-vehicles
given their past trajectories and the road contextual infor-
mation. The perception system detects the vehicle with a
bounding box (left). The intention and trajectory prediction
results are presented on the right in text and as green markers
respectively.

of exo-vehicles, such as keeping the current lane, changing
to the left lane, or changing to the right lane. At the low
level, we use a polynomial curve fitting method to predict the
vehicles’ actual motion conditioned on their intentions. This
hierarchical model allows us to learn the driving intentions
independently of driving trajectories, thus requiring limited
amount of training data to learn the correlations between the
road contextual information and driver’s intentions. Since the
trajectories can vary significantly across different drivers, the
online polynomial curve fitting model helps us capture this
variance, aptly.

The planning process can be formalized as a Partially
Observable Markov Decision Process (POMDP) [1] which
provides a principled way to handle uncertainties such as par-
tial observability, action noise and sensing noise. However,
POMDP planning suffers from its well-known high computa-
tional complexity. In order to achieve real-time planning, we
further use road contextual information to assist the search
by pruning invalid actions and shaping the rewards.

Our contributions in this paper are: (a) an autonomous
driving framework that can track and predict intentions and
trajectories of multiple exo-vehicles, (b) a context-aware
prediction model which decouples intention and trajectory
prediction for exo-vehicles, (c) a context and intention aware
planner that determines long-term high-level actions of the
ego-vehicle under uncertainties of exo-vehicles’ intentions.
We evaluate our driving system qualitatively and quanti-
tatively in a range of scenarios using a simulator which
integrates real-world road networks and the relevant contex-
tual information. We also analyzed our system performance
on real-world data. Our results show that integrating road
contextual information and intention inference into long-
term planning helps improve the efficiency and safety of the
system.



II. RELATED WORK

A. Road contextual information

Given the widespread availability of precise and high
resolution digital map information [2], [3], the possibility of
using the road contextual information as a prior for behavior
prediction is becoming increasingly prevalent. Specifically,
in [4], the authors propose a one-stage detector and behavior
predictor using two different 2D convolution neural net-
works, each one processing 3D point cloud data and dynamic
map information. Similar to our work, their map information
comprises static road features such as lanes, intersections,
crossing and traffic signs. They categorize behavior predic-
tion into high-level actions and motion estimation using the
same neural network framework. In our work, we use road
contextual information for not merely behaviour prediction
but also for high-level planning.

B. Intention Inference and Trajectory Prediction

Intention and trajectory prediction of dynamic obstacles
are two key components for decision making of autonomous
vehicles. A survey of state-of-the-art intention and trajectory
prediction algorithms is presented in [5]. Neural networks are
popularly known to be useful for intention prediction [6]. For
example, neural networks were used for both intention and
trajectory prediction for vehicles on highways in [7] and [8],
and for trajectory prediction only in [9]. These approaches,
however, require a huge amount of data for learning a range
of driving behaviors. We overcome the challenge of large
data requirements by using a neural network to only predict
the intention whereas the trajectory of predicted intention is
obtained based on polynomial fitting and extrapolating the
real-time vehicle state [10]. This allows us to predict the
intention and trajectory in real-time.

C. Planning with human intentions

Several previous work use POMDPs to handle the uncer-
tainty in human drivers’ intentions. Some of this research
focuses on intersection scenarios with a small number of
agents. In [11], the authors modeled exo-vehicles’ intended
behaviours: to drive aggressively or patiently, as hidden vari-
ables of the POMDP. They then solved the POMDP offline
to control ego-vehicle’s speed at the intersection. Due to the
high computational cost of offline planning, the approach
has only been tested in two-vehicle interactions. A similar
approach was taken in [12], but they infer the intention of
other vehicles using a reaction-based probabilistic model.
Noticeably, the work used a rich representation of road
contexts to help predict other vehicles’ motion. However, this
representation also induces high computational complexity.
Thus their results only discussed interactions among 2∼
3 vehicles. Our system uses a much more concise notion
of road contexts. Recently, POMDP planning is applied to
leverage a road network known a-priori to the robot vehicle
for driving at intersections [13]. Their method models the
intended paths of exo-vehicles on the road network as hidden
variables and also control the vehicle speed.

We argue that the lane merging problem is much harder
than the intersection case, because exo-vehicles have a lot
more freedom: drivers can choose to merge lane at any
moment when they feel it promising. The decision making of
lane merging scenarios has been studied by several previous
work. A simplified approach [14] was proposed to make
the lane merging problem tractable: evaluate a fixed set of
policies by sampling exo-vehicles’ intentions and rolling out
future interaction trajectories. A similar multi-policy decision
making approach [15] has been applied to navigation among
multiple pedestrians. These multi-policy methods only plan
for one-time interaction with other agents. However, in
real-life driving scenarios, long-term interactions are often
required, e.g., executing multiple lane merges to reach a
faster lane. Another set of work [16], [17] addresses the lane
changing problem from the perspective of active information
gathering. Both work apply exploration bonuses on the
reward function to encourage probing actions that bring
information to better understand human drivers’ inner states.
Again, these work only focused on the interactions among a
small number of vehicles.

Another group of work studied the interaction with multi-
ple agents, typically pedestrians, which incurs exponentially
higher complexities than the aforementioned scenarios. It has
been proposed in [18] to model pedestrian intentions as a
finite set of goals and apply a simple goal-directed motion
model to predict pedestrian motions. The method used a
state-of-the-art online POMDP planning algorithm DESPOT
[19] to handle moderately dense crowds. A recent work
[20] proposed a more sophisticated pedestrian motion model,
PORCA, and integrated it into parallel POMDP planning
[21] to drive an autonomous vehicle among many pedestri-
ans. Different from these work for free-walking pedestrians,
our system interacts with multiple vehicles on urban roads,
in which case it is important to leverage road contexts in
intention inference, motion prediction, and decision making.

III. OVERVIEW

The overview of our autonomous driving system is pre-
sented in Fig. 2. It comprises three sub-systems: perception,
high-level decision maker, and low-level controller. In the
perception system [22], a LiDAR-based point cloud clus-
tering module and a vision-based obstacle detection and
classification module are used for identifying the road region
and the vehicles. Their outputs are fused in the sensor
fusion module for vehicle tracking. The high-level decision
maker receives the tracking trajectories, infers a belief over
the intentions of each vehicle, then plans lane-keeping/lane-
changing action based on the inferred intention belief and the
road contextual information. The planned action can then be
sent to the low-level controller to plan a path and provide
the steering and throttle control that tracks the path. The
low-level controller is however not addressed in this paper.

This work focuses on developing the decision maker to
plan for high-level action, specifically, the action of keeping
lane, changing to left lane, or changing to right lane, for the
ego-vehicle, to achieve context and intention aware planning
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Fig. 2: System overview comprising of perception, high-level
decision making and low-level control modules.

for autonomous driving. We first use an LSTM intention
predictor to infer a belief over the current intention, i.e.,
the high-level action, of each nearby exo-vehicle, based on
their trajectories and the road contextual information. The
intention belief and the road contextual information are then
input to a POMDP planner to plan for the lane-keeping/lane-
changing action. At each time step, the planner uses belief
tree search [19] to reason about the uncertain intentions of
exo-vehicles. The belief tree search takes as input the current
belief and the state of all vehicles and performs Monte Carlo
simulations for the uncertain future to provide the largest
rewarding high-level action.

IV. CONTEXT AND INTENTION AWARE
PLANNING

We present our high-level decision maker in this section.
The decision maker receives the tracking trajectories of exo-
vehicles, and outputs the lane-keeping/lane-changing action
for ego-vehicle. It mainly consists of three modules: a
road context database, an LSTM intention predictor, and a
POMDP high-level planner. Inside the POMDP planner, a
trajectory predictor is used as transition function to simulate
the future trajectories of all vehicles. We condition both the
LSTM intention predictor and the POMDP planner on the
road contextual information.

A. Road Contextual Information

The road contextual information is obtained from the Open
Street Map [2]. The contextual information comprises the
number of lanes, the direction of the lanes, the lane width,
and the positions of the start and end points of each lane.
We further pre-compute the path corresponding to the lane
center which are feasible to navigate by a non-holonomic
vehicle, and the shortest distance between the end points of
each lane pair. The lane center and the lane directions are
overlaid on the map and illustrated in Fig. 3.

B. Intention Inference

We use a recurrent neural network architecture to infer
the belief over the current intentions of the exo-vehicles.
We formalize the intention as the high-level action, i.e.,
the action of lane-keeping, left-lane-changing, or right-lane-
changing, of the exo-vehicle. Concretely, we implement a
Long Short Term Memory (LSTM) network to infer the
intention belief. The LSTM is trained using generic features

Fig. 3: Road contextual information provided by Open Street
Map. The lane centers is marked in yellow along with the
direction in black.

which are representative of the lane-keeping/lane-changing
intention and also provide the road contextual information
[10]. This allows the predictor to collectively learn the
correlation between the intentions and the road contextual
information. These features include,
• δx: Change in lateral pose
• δy: Change in longitudinal pose
• ll: If left lane exists (Boolean 0/1)
• rl: If right lane exists (Boolean 0/1)
• dcenter: Distance from the center of the lane.

where, dcenter value ranges from −1.5m to 1.5m for an
average lane width of 3m. The LSTM network is trained
with the above features for trajectories of 4 time steps where
each time step is of 0.25 second. The hidden state vector
of the LSTM is updated at each time step based on the
hidden state at the previous time step and the input vector
at the current time step. The output of the final state of the
LSTM is fed into a fully-connected (FC) layer with a softmax
activation function. The output of the FC layer is a belief,
i.e., probability distribution, over three classes: lane-keeping,
right lane-changing, and left lane changing. We use 256 units
for the LSTM layer and fully connected layer. The model is
trained to minimize the sum of the cross-entropy losses of the
predicted and ground truth classes, and trained using Adam
(adaptive moment estimation) optimization algorithm [23]
with a learning rate of 0.0001. The training data for LSTM
is obtained using our ego-vehicle so that we can precisely
label the start and end points of desired intention sequence.

C. Trajectory Prediction

Given the road contextual information and the past poses
of the target vehicle, we predict the vehicle’s trajectory
for each given intention. The past poses of the vehicle
are modeled by 5th and 4th order polynomial representing
the lateral and longitudinal components of the trajectory as
suggested in [24]. The lateral displacement of the vehicle
d(t) changing with time t is represented by:

d(t) = c5t
5 + c4t

4 + c3t
3 + c2t

2 + c1t+ c0, (1)



where ci,i={0,1,2,3,4,5} are the unknown coefficients. Given
the initial and final states of the vehicle at a start time t0 = 0
and a predefined end time t1 respectively, we can solve for
the unknown coefficients of the polynomial using:

t50 t40 t30 t20 t0 1
t51 t41 t31 t21 t1 1
5t40 4t30 3t20 2t0 1 0
5t41 4t31 3t21 2t1 1 0
20t30 12t20 6t0 2 0 0
20t31 12t21 6t1 2 0 0

 ·

c5
c4
c3
c2
c1
c0

 =



d0
d1
ḋ0
ḋ1
d̈0
d̈1

 (2)

where di, ḋi and d̈i, i = {0, 1} are the displacement, speed
and acceleration in the lateral direction at the start time (i =
0) and the end time i = 1, respectively. We can compute d0,
ḋ0 and d̈0 easily from the vehicle’s past trajectory. The final
displacement, d1 is selected based on the predicted intention
whereas, the final lateral speed ḋ1 and acceleration d̈1 are
set to be zero because the vehicle usually will not move in
the lateral direction after it reaches the intended lane.

The longitudinal displacement s(t) of the target vehicle is
represented as:

s(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0. (3)

Similar to the lateral component, the unknown coefficients
ci,i={0,1,2,3,4} for the longitudinal component of the trajec-
tory are solved using Eq. (4), given the initial state at t0 = 0
and the final state at the predefined end time t1.

t40 t30 t20 t0 1
4t30 3t20 2t0 1 0
4t31 3t21 2t1 1 0
12t20 6t0 2 0 0
12t21 6t1 2 0 0

 ·

c4
c3
c2
c1
c0

 =


s0
ṡ0
ṡ1
s̈0
s̈1

 (4)

We can easily compute the displacement s0, the speed ṡ0
and the acceleration s̈0 in the longitudinal direction for the
initial state using the vehicle’s past trajectory. However, the
final longitudinal speed ṡ1 and acceleration s̈1 are unknown
and need to be inferred. Constant velocity (Const-Vel) and
constant acceleration (Const-Acc) models are two most sim-
ple and popular models to infer them. Const-Vel sets ṡ1 = ṡ0
and s̈1 = 0. Const-Acc sets ṡ1 = ṡ0 + s̈0 ∗ t1 and s̈1 = s̈0.

However, Const-Vel and Const-Acc do not predict well in
the presence of other vehicles, since they do not consider
the interactions between vehicles. To address this issue, we
propose to use a time-to-collision model (TTC) to predict
the longitudinal speed. TTC computes the speed ṡ1 for
the target vehicle based on the distance df to the front
vehicle in its target lane, along with the speed and maximum
deceleration, assuming the worst case scenario, i.e., front
vehicle suddenly decelerates with its maximum deceleration.
Since it is impossible to know the maximum deceleration of
the exo-vehicles, we assume it is the same as the maximum
deceleration amax of the ego-vehicle. The speed of the target
vehicle is computed by:

ṡ1 = min

(
vmax,

√
max(0, v2f + 2amax(df − dsafe)

)
, (5)

where vmax is the maximum speed allowed, vf is the current
speed of the front vehicle and dsafe is a predefined safe
distance. The acceleration is computed accordingly by

s̈1 = (ṡ1 − ṡ0)/t1. (6)

Now with d(t) and s(t), we can predict the lateral and lon-
gitudinal displacements of the vehicle. Using the road con-
textual information and predicted intention, we can project
those displacements into the target lane and get the predicted
trajectory of the vehicle.

D. Context and Intention-aware POMDP

We formulate the high-level decision making process in
urban environments as a POMDP model. POMDP provides a
principled general framework for planning under uncertainty.

1) POMDP Preliminaries: A POMDP model is formally
defined by a tuple (S,A,Z, T,O,R, b0), where S, A and Z
represent the state space, the action space, and the observa-
tion space, respectively. The transition function T (s, a, s′) =
p(s′|s, a) represents the probability of reaching a state s′

after the robot executes an action a in state s; it characterizes
the imperfect robot control and environment dynamics. The
observation function O(s, a, z) = p(z|a, s) represents the
probability of receiving an observation z after the robot
executes a and reaches s; it models the sensor noises.
The reward function R(s, a) defines a real-value reward for
executing a in s. The robot does not know the exact state
it is in because of imperfect sensing. Therefore, it maintains
a belief, i.e., probability distribution, over S. Initially, the
robot’s belief is b0, and it gets updated via Bayes’ rule at
each time step. The aim of POMDP planning is to find a
policy π, a mapping from a belief b to an action a, that
maximizes the expected total discounted rewards:

Vπ(b) = E
( ∞∑
t=0

γtR(st, π(bt))
∣∣∣ b0 = b

)
, (7)

where st is the state at time t, π(bt) is the action that the
policy π chooses at time t, and γ ∈ (0, 1) is a discount
factor that places preferences for immediate rewards over
future ones.

2) Context and Intention Aware POMDP: We construct
the context and intention aware POMDP model for lane-
keep/lane-change decision making in urban environments.

State Modeling. In our problem formulation, the state is
defined as a combination of road contextual information
c, pose (x, y, θ) of each vehicle, and the intention g of
each exo-vehicle. The intentions of exo-vehicles are not
observable to the ego-vehicle; we formalize them as hidden
variables in the state.

Action Modeling. We plan the high-level action for the
ego-vehicle at each time step, including LANE-KEEP, LEFT-
LANE-CHANGE and RIGHT-LANE-CHANGE. We further prune
the forbidden actions in different lanes with the help of road
contextual information.

Observation Modeling. The observation consists of the
road contextual information, poses, speeds and intentions of



all vehicles. We do not consider sensor noises on the obser-
vations, to focus on modelling the uncertainty in intentions
of the exo-vehicles.

Transition Modeling. The transition function models the
movements of each vehicle under different intentions. For
each vehicle, we use the trajectory predictor from Section IV-
C to predict its next-step pose, given its intention and the
road contextual information. By adding a Gaussian noise on
the pose, for each vehicle, we obtain a transition function:

p(xt+1, yt+1, θt+1|h(t), g, c), (8)

where h(t) = {xt, yt, θt, ..., xt−3, yt−3, θt−3} is a 4-time-
step history of the past poses. For the ego-vehicle, its
intention is represented by its high-level action.

Reward Modeling. The reward function is designed for
the sake of safety, efficiency and smoothness of driving. To
achieve safety, we penalize the collision with exo-vehicles
with a huge penalty R = −1000×max [(4− d)2, 1], where
d < 4 meters is the distance between the two vehicles in
collision. We divide the reward for efficiency into global
reward and local reward. For global reward, we assign a
reward R = 0 when the vehicle reaches its destination and a
penalty R = −100× (d/dmax) where d is the distance from
current lane to the destination lane and dmax is the maximum
inter-lane distance, to penalize the ego-vehicle for choosing
a lane that is farther to the destination. For local reward, we
assign a penalty R = 20 × v−vmax

vmax
to encourage the ego-

vehicle to choose a lane on which it can drive faster. For
smoothness, we assign a penalty R = −1 for doing lane
changes to avoid excessive lane changes. The final reward is
the weighted sum of the aforementioned individual rewards.

Initial Belief. We use the LSTM intention predictor from
Section IV-B to infer the belief over the intentions of each
exo-vehicle, and use the inferred belief as the initial belief
of the POMDP model.

3) Solving POMDP: We use Determinized Sparse Par-
tially Observable Trees (DESPOT) [19] for solving the
lane-keeping/lane-changing POMDP. DESPOT is one of the
fastest online POMDP solvers. The key idea of DESPOT
is to search a belief tree under K sampled scenarios only,
which greatly reduces computational complexity, making it
an efficient solver for our POMDP model.

V. EXPERIMENTAL RESULTS

We validate our POMDP high-level planner with both
simulated and real-world data, both qualitatively and quan-
titatively. Specifically, for qualitative analysis, we designed
four scenarios to validate the behavior of our planner, demon-
strating the benefit of using the contextual information,
intention inference, and long-term planning. For quantitative
analysis, we randomly generated scenarios in simulation and
tested the performance of our planner, and compared the
average results with those of baselines.

In the following, we will first introduce our baseline
algorithms and the criteria for our performance comparison.
Then we will introduce the four scenarios we designed and
analyze our results with both simulated and real-world data.

A. Baseline algorithms

We compared our algorithm, Context-Intention-POMDP,
with three baselines: Reactive-Controller, Greedy-Controller,
and SimMobilityST.

1) Reactive-Controller: This controller reacts based on
the distances from the ego-vehicle to the front exo-vehicles
in different lanes. It first gets the headway distances from
the perception system, i.e., the distances to the nearest front
vehicle, in the current lane, the headway distance in the left
lane (if left lane exists), and the headway distance in the right
lane (if right lane exists). It then compares those headway
distances with a distance threshold D. It chooses to keep lane
if the headway distance of the current lane is larger than D.
Otherwise, it chooses to change to the lane with the largest
headway distance. We set D = 20 meters in our experiment.

2) Greedy-Controller: The controller greedily chooses to
drive in the lane that is shortest to the destination lane at
each time step regardless of exo-vehicles.

3) SimMobilityST: SimMobilityST is a rule-based algo-
rithm used in SimMobility short-term simulator [25] to cen-
trally control the driving behavior of the simulated vehicles.
SimMobilityST uses a four-level decision maker to model the
individual driving behavior of each vehicle. These decisions
include, (a) target lane selection, (b) gap acceptance of
the leading and lagging vehicles, (c) the target gap and
(d) desired acceleration. The first decision of target lane
selection, is based on a global path following model. The
vehicles select the target lane such that they follow the global
path assigned to them. Once the target lane is decided, the
second decision of accepting the gap distance to the leading
and lagging vehicles is made by comparing the available gap
with the critical gap. If the gap to the neighbouring vehicles
is acceptable, the target gap of the ego-vehicle after reaching
the target lane is decided based on the expected speeds of
the neighbouring vehicles. Finally, the desired acceleration is
decided based on the driver’s state: car-following (in original
lane), lane-changing, and recovering after lane-changing (in
target lane).

B. Criteria for Performance Comparison

We compared our planner, Context-Intention-POMDP,
with the baseline algorithms in terms of safety, efficiency,
and smoothness. We measure the safety by the collision rate,
the efficiency by the success rate and travel time, and the
smoothness by the number of lane changes per 100 meters.
One trial is considered unsuccessful if the ego-vehicle did
not reach the goal within 3 minutes or collision occurs. We
computed the average results for travel time and number of
lane changes only for successful trials.

C. Experiments in Simulation

We experimented in a simulator, SimMobility, in order
to test a wide-range of scenarios for our high-level motion
planning algorithm, without any influence of the perception
errors. SimMobility incorporates the real-world road network
and contextual information. The exo-vehicles in the simulator
are controlled by SimMobilityST algorithm.



(a) (b) (c) (d)

Fig. 4: Scenario 1. The ego-vehicle (cyan) overtakes the slowly-moving exo-vehicles (violet) by changing to the right lane
first and then changing back. The red arrow indicates the destination of the ego-vehicle. The yellow lines represent the lanes.

(a) (b) (c) (d)

Fig. 5: Scenario 2. The ego-vehicle (cyan) first changes to the right lane. After inferring the exo-vehicles’ intentions of
driving to the right lane, it immediately changes to the left lane which saves travelling time and avoids near collisions.

(a) (b) (c) (d)

Fig. 6: Scenario 3. The ego-vehicle (cyan) executes a sequence of complicated maneuvers to arrive at its destination faster:
changing to the right lane, then waiting for the gap to increase, and at last overtaking the front vehicle.

(a) (b) (c) (d)

Fig. 7: Scenario 4. The ego-vehicle (cyan) encounters a traffic jam. After waiting for a while, it decides to change to the
right lane, which leads to a detour but is free to go.



We first analyzed our planner qualitatively using four
specially designed scenarios. Fig. 4 to Fig. 7 shows the
driving behaviour of our planner on those four scenarios.
The direction towards the destination location is indicated
by the arrow sign in each scenario.

Scenario 1 (Fig. 4) demonstrates the need of integrating
road contextual information into planning. Without knowing
the contextual information, the ego-vehicle will not be able to
overtake or change back to the left lane after it overtakes the
exo-vehicles. The latter is required as the right lane leads
to a bigger detour to the destination. For example, in this
scenario, a vehicle using Greedy-Controller fails to overtake
the front vehicles while, Reactive-Controller fails to change
back to the left lane after passing the slow vehicles.

Scenario 2 (Fig. 5) shows the benefit of integrating inten-
tion inference into planning. Using our Context-Intention-
POMDP planner, the ego-vehicle starts to change to the left
lane (Fig. 5(c)), which is closer to its destination, immedi-
ately after it infers that the exo-vehicles intend to change to
the right lane. Both Reactive-Controller and SimMobilityST
start to change to the left lane only after all the exo-vehicles
complete their lane changes, which is inefficient and may
cause collisions.

Scenario 3 (Fig. 6) and Scenario 4 (Fig. 7) illustrates the
benefit of long-term planning. In Scenario 3, the ego-vehicle
using Context-Intention-POMDP executes a sequence of
complicated maneuvers: changing to the right lane, waiting
for a safe gap to overtake the left vehicle and lastly returning
to the right lane to go towards its destination. This requires
long-term planning. In Scenario 4, we simulate the traffic
jam by letting all exo-vehicles stop at the intersection. Using
Context-Intention-POMDP, the ego-vehicle first waits for a
while, then changes to the right lane, which takes it farther
away from its destination but at a faster speed.

We also quantitatively evaluated our Context-Intention-
POMDP planner and compared them to the baseline meth-
ods, using 200 randomly generated scenarios.

Algorithm Collision
Rate

Travel
Time (s)

Num. Lane
Changes
per 100m

Success
Rate

Reactive-Controller 0.0 78.7 0.6 0.725
Greedy-Controller 0.0 84.9 0 1.0

SimMobilityST 0.0 71.7 0.4 1.0
Context-Intention-

POMDP 0.0 65.7 0.7 1.0

TABLE I: Average performance comparison on 200 ran-
domly generated scenarios. The average results are computed
using only the successful trials.

In each scenario, we fixed the start and destination of all
the vehicles, but randomly generated speed, and time of lane
changes for 5 exo-vehicles along a path of length 324.4
meters. We set the maximum speed of the ego-vehicle to
be 6.5m/s. The average performance of our algorithms and
the baselines are shown in TABLE I. Overall, our planner
can reach the destination much faster with a slightly larger
number of lane changes. One of the potential reason for

increased number of lane changes for our planner is related to
our choice of smoothness reward which has the least weight
compared to safety and efficiency reward values.

D. Experiments in Real World

We validated our planner on a self-driving car (SCOT) in
a real urban environment, in Singapore, with several parked
cars on the roadside, slowly moving vehicles and pedestrians
at crossings. Specifically, we created three scenarios similar
to Scenario 1, 2 and 3 from Section V-C with a leading
vehicle. The ego-vehicle was controlled by a safety driver
and his spontaneous actions are compared with the high-
level action outputs of our planner. The safety driver was
not provided with any information about the scenarios to
avoid any biasness in the results.

The high-level actions of our planner for Scenario 1
are presented in Fig. 8. The LANE-KEEP, LEFT-LANE-
CHANGE and RIGHT-LANE-CHANGE actions are represented
by blue, green and red colours, respectively. Initially in
frame 1, the ego-vehicle detects the leading vehicle at a
reasonable distance and keeps lane. It then infers that the
exo-vehicle is moving slowly and suggests a RIGHT-LANE-
CHANGE in frame 2. The safety driver eventually changes
lane from opposite side of the road while the planner is still
suggesting RIGHT-LANE-CHANGE in frame 3. Lastly in frame
4, the planner suggests to merge back to its original lane
as soon as a safe gap is observed. This once again matched
the safety driver’s action. Our perception system does not
differentiate trajectories between pedestrians and vehicles.
But interestingly, our planner still manages to handle the
scenario with pedestrians: after returning to the original
lane in frame 5, a pedestrian is observed and the planner
briefly suggests RIGHT-LANE-CHANGE based on its limited
observations, and after predicting the pedestrian’s trajectory
of moving towards the right lane, it consistently suggests to
keep lane in frame 6, similar to the safety driver’s action.

We successfully demonstrated that our context and in-
tention aware planner suggested actions in advance which
matched the safety driver’s actions for all three scenar-
ios. These real urban environment scenarios and the sim-
ulated results are presented in the following video link:
https://youtu.be/psm6juPltJs.

VI. DISCUSSION AND CONCLUSION

We presented a complete framework for autonomous driv-
ing in urban environments based on our novel context and
intention aware planner. The use of road contextual infor-
mation allowed us to reduce the uncertainties in intention
and trajectory predictions of exo-vehicles, as well as, reduce
the computation cost of our planner for the ego-vehicle.
The presented simulation and real world results suggest that
we can plan safe and time efficient decisions over a range
of urban road scenarios when compared to the baseline
algorithms.

Our work, however, does have some limitations. Specif-
ically, our intention prediction module considers the exo-
vehicles independently, ignoring the influence of interactions
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Fig. 8: Scenario 1 in real world. The ego-vehicle (cyan) encountered a slowly-moving vehicle and a pedestrian (red boxes).
The actions suggested by the planner matched with those the driver actually executed.

between them. This can be learned more efficiently such
that the planner can make informed decision with increased
certainty. Also, the high-level actions provided by our plan-
ner are decoupled from the low-level control. It is possible
that low-level controller cannot execute the high-level action
given by the planner. We hope to address these concerns in
our future work for autonomous driving in complex urban
environments.
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