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Abstract— We present a real-time vehicle detection and
tracking system to accomplish the complex task of driving
behavior analysis in urban environments. We propose a robust
fusion system that combines a monocular camera and a 2D
Lidar. This system takes advantage of three key components:
robust vehicle detection using deep learning techniques, high
precision range estimation from Lidar, and road context from
the prior map knowledge. The camera and Lidar sensor fusion,
data association and track management are all performed in
the global map coordinate system by taking into account the
sensors’ characteristics. Lastly, behavior reasoning is performed
by examining the tracked vehicle states in the lane coordinate
system in which the road context is encoded. We validated
our approach by tracking a leading vehicle while it performed
usual urban driving behaviors such as lane keeping, stop-and-
go at intersections, lane changing, overtaking and turning. The
leading vehicle was tracked consistently throughout the 2.3 km
route and its behavior was classified reliably.

I. INTRODUCTION
Autonomous driving technology for urban environments is

at the forefront of academic and industrial research. Unlike
autonomous driving on highways, urban environments pose
unique challenging scenarios with more complicated road
network and traffic signals. In addition, autonomous vehicles
need to take into account the uncertainties involved in the
interaction with other road users.

A key aspect in dealing with uncertainties in urban envi-
ronments is to understand the intentions of other vehicles.
Any misinterpretation of other vehicle’s intentions will not
only result in uncomfortable ride due to unnecessary jerks
but also cause potential car accidents in the worst case.

The autonomous vehicles, hence, need to accurately an-
alyze and predict the behavior of other vehicles to ensure
safety and smooth navigation through the environment. The
task of behavior analysis, however, is not independent of the
autonomous vehicle’s capability to detect and track other
vehicles. Vehicle position could be obtained by a single
measurement from sensors but its velocity has to be inferred
through tracking a sequence of current and past measure-
ments. Only then, behavior analysis can be performed based
on the vehicle trajectory and road structures.
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In this paper, we introduce and discuss a general frame-
work for multiple vehicles detection, tracking, and behavior
analysis based on the road context. The architecture of the
proposed system is sub-divided into five subsystems: Vision-
based detection and classification, Lidar-based clustering,
sensors fusion and tracking, lane coordinate transformation
and behavior analysis as shown in Fig. 1.

The vision system detects the vehicles in the image using
widely known deep convolutional neural network, YOLO [1]
(You Only Look Once). YOLO also provides bounding boxes
of detected vehicles in the image frame, which are then
utilized to estimate their positions in the map frame by
assuming a planar road surface. The Lidar-based clustering
system provides a set of potential clusters after extracting
the point cloud from the road region. Data association and
tracking are performed in the global map frame by the
tracking system, where we combine measurements from both
vision and Lidar according to the certainty of detection and
sensors accuracy. Next, we calculate the detected vehicle
position and velocity with respect to the lane coordinate
system where behavior analysis could be performed under
the context of the road structure.

The main contributions of this paper are twofold:

• A new approach in vehicle detection and tracking via
fusing of Lidar and camera where the limitations of
each sensor can be overcome. Robust vehicle detection
from vision help us remove a lot of false positive if
Lidar-based detection system was used. However, Lidar
measurement is fused with vision detection to give a
better tracking performance in term of a higher sampling
rate and a better state estimation accuracy.

• A behavior analysis approach that utilized road geome-
try information from the prior map. The behavior anal-
ysis of the vehicle is performed under its current road
context, using measures defined in the lane coordinate
system.

II. RELATED WORK

In the past decades, detection and tracking of moving
objects (DATMO) has been extensively studied by the mobile
robotics community. Several of these techniques are applica-
ble to autonomous driving and they have been widely used.
A comprehensive literature review for autonomous driving is
presented in [2] and [3]. In this section, we highlight some
of the recent work on detection and tracking using sensor
fusion for autonomous driving.



Fig. 1. General architecture of the detection, tracking and behavior analysis.

In [4], the authors used Lidar to detect, track and classify
pedestrians and vehicles in the Lidar frame of reference.
The positions of detected objects were then transformed into
the image frame to find the region of interest for the vision
classifier. A sum decision rule was used to combine the result
of classification from both Lidar (GMM classifier) and vision
(AdaBoost classifier).

Similarly, authors in [5] also considered Lidar as the
main sensor in their sensor fusion configuration. The moving
objects were first identified using inconsistencies between
free and occupied cells within the map. If an occupied cell
is detected on a location previously set free, then it belongs to
a moving object. The region of interest provided by the Lidar
detection system is used as the input for image classification
using Histogram of Gradient (HoG) descriptor [6].

Cho et al. [7] proposed a new tracking system consisting of
two parts: sensor layer and fusion layer. In the sensor layer,
detection and classification were performed for each sensor
independently, and their results are combined in the fusion
layer which gives the final outcome. This layered system
offers a separation between actual sensing hardware and data
processing for detection and tracking. In [8], the authors
used Lidar for obstacle detection and monocular camera for
classification. Sensor fusion is again performed at a higher
level of abstraction based on detection certainty and sensors
accuracy.

In contrast to previous work discussed above, our sensor
fusion approach relies primarily on vision rather than Lidar.
We make use of recent advancements in computer vision
and deep learning for object detection in real-time and
with high accuracy. We perform data association in the
global map frame, where we combine high variance vision-
based position estimation with the low variance laser point
clustering to achieve better position estimation.

Behavior analysis to classify the intention of the sur-
rounding vehicles is a relatively new research area compared
to the vehicle detection and tracking. Most of the related
works focus on a very specific maneuver like lane changing
or overtaking, and the experiments are mainly conducted
in highway environments. In [9], the authors proposed a
new approach based on Support Vector Machine (SVM)
and Bayesian filtering to predict lane change behavior on
the highway. Similarly, [10] used one-class SVM to detect

dangerous lane change maneuvers in the dataset extracted
from 2nd Strategic Highway Research Program (SHRP 2)
[11]. An object-oriented Bayesian network was developed
in [12] to classify maneuvers including merging and object
following in structured highway scenarios.

Furthermore, many previous studies did not utilize road
context information available from the digital map. As
pointed out by [13], the precise roadway geometry infor-
mation can improve the performance of the behavior rea-
soning algorithms by introducing constraints to reduce the
complexity of the problem. Our approach is motivated by
their research and we conducted our experiments in a real
urban driving environment instead of a vehicle test track.

III. METHODOLOGY

A. Vision-based object detection and classification

In order to achieve real-time performance for object
detection, we use YOLO, a convolution neural network
architecture. We trained our network using a hybrid dataset
which comprises of images from KITTI dataset [14] and
an endemic dataset from Singapore roads. A significant
increase in accuracy is obtained by training both datasets
concurrently. As our primary interest is to detect other road
users, we only detect three different classes of objects,
namely pedestrian, bike and vehicle. For the sake of clarity,
we only discuss vehicle detection in this paper although our
approach is applicable to the remaining classes of objects.
Offline network inference on NVIDIA Titan X GPU shows
that the system can be executed at 40 fps with mAP of 74.1.
However, during real-time execution on the vehicle’s PC,
equipped with less powerful NVIDIA GTX 1070 GPU, we
execute the network inference at 5 fps to compensate for
the computational resources required to run other processes
concurrently.

We estimate the position of detected vehicles in the global
map coordinate system by projecting the coordinates from
the image frame using the pin-hole model and flat-ground
assumption [15].

B. Point Cloud Clustering

The Lidar range information is first pooled together into
a point cloud. These points are then filtered using a binary
road mask, which filters out the points that correspond to



objects that are not on the road, e.g. vegetations, buildings,
etc. The filtered points are then clustered using DBSCAN
Algorithm [16] to generate an array of cluster centroids at
the rate of 30 Hz. The centroid position is then published in
the global map coordinate system.

C. Sensor Fusion and Tracking

1) Data Association: We have implemented a generic data
association framework for sensor fusion that is agnostic to
both the number of sensors as well as the type of sensor
being used.

We define the state of our world at any time instant as a
set of tracks Ψt. These tracks store the information of each
vehicle as vehicle state vector. To correctly track obstacles,
it is essential to determine whether there is a need to start a
new track or the detected object already exists in the track
system. We model this problem of assignment as a bipartite
graph G(V, E) where obstacles and tracks are represented as
vertices v ∈ V, and edges e ∈ E represent cost between two
vertices. This problem is a typical example of a bipartite
graph as each vehicle can only be assigned to a single track.
The global assignment cost is defined as

N∑
i

M∑
j

c(i, j) (1)

where

c(i, j) =

(
xi − xj
σx

)2

+

(
yi − yj
σy

)2

+ log
(
σxσy

)
(2)

and (xi, yi) is the position of the detected vehicle, (xj , yj)
are the predicted position of the object based on track j
and (σx, σy) are the standard deviation of sensor’s detec-
tion. Each of these quantities is considered in the global
map coordinate system. The cost c(i, j) is essentially a
weighted distance by discounting the measurement that has
large uncertainty (variance) in a particular dimension. For
example, the depth estimation from the vision has a larger
uncertainty compared to its lateral estimation, and hence the
measurement from the depth projection axis which has a
larger variance, are discounted in the cost calculation during
data association. There are 6 possible cases for assigning N
vehicles to M tracks:

• N = M , observed vehicles match exactly the existing
tracks

• N = M , there is mismatch among the observed vehicle
with existing tracks

• N > M , all M tracks have an observation
• N > M , not all M tracks have an observation
• M > N , all N vehicles have an existing track
• M > N , not all N vehicles have an existing track
A cost matrix is then populated using (2). Given the

cost matrix, Munkres algorithm [17] is used to find the
appropriate assignment by minimizing the overall cost of the
assignment. Then, each association is checked for its validity
by comparing the cost with a minimum cost threshold. If the
assignment cost is less than the threshold, the assignment

is considered valid. A new track is only generated when
the assignment cost is greater than the threshold, and the
observation source is the vision-based detection system. We
discard Lidar-based observations with assignment cost that
is greater than the threshold in order to avoid false positives.

2) Filtering System: Kalman Filter (KF) and its variants
have been widely used for vehicle tracking given their low
computational cost and practically adequate accuracy. Once
a track has been initialized, we use KF to propagate the
vehicle states using the constant velocity model and update
the predicted state with the incoming new measurements. In
the following section, we define states and matrices used in
our filtering system, where standard KF equations are used
to update the state.
i-th detected vehicle’s state vector X at time t consists

of the vehicle’s position (x, y) and vehicle’s velocity (ẋ, ẏ)
defined in the global map coordinate frame.

Xi
t =

[
x ẋ y ẏ

]T
and the associatied measurement vector Y consists of the
vehicle’s position (x, y) estimated from sensors.

Yi
t =

[
x y

]T
The transition matrix

A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


is used in predicting vehicle’s movement by assuming con-
stant velocity model as given above, where ∆t is the time
difference between two consecutive states being considered.
While the observation matrix can be written as

H =

[
1 0 0 0
0 0 1 0

]
because only the vehicle’s position (x, y) is observable from
our sensors.

The state is initialized using the vehicle’s position when it
is first detected and has zero velocity, with the measurement
error matrix based on the sensor characteristics

RV =

[
σvx 0
0 σvy

]
;RL =

[
σlx 0
0 σly

]
with RV , RL representing the measurement error matrix for
vision and Lidar, respectively. Lidar has a better accuracy in
term of position estimate when compared to camera, thus
σl is smaller than σv in order of magnitude. Internally,
σlx is equal to σly as the measurement accuracy for both
axes is indifferent for Lidar. On the other hand, σvx is
larger than σvy for vision because depth estimation is based
on flat ground assumption which has a larger uncertainty
compare to the lateral estimation. When applying (2) for
the vision measurement update, the difference in distance
for the longitudinal axis x and the lateral axis y have to be
expressed in the ego vehicle body-fixed coordinate system



such that distance differences are discounted correctly. In
our experiment, we set σlx = σly = 2 and σvx = 10, σvy = 5.

3) Track Management System: The environment state at
time t with m vehicles being tracked simultaneously, is
represented as Ψt in (3). Specifically, the track of ith vehicle
that contains all the previously detected states of that vehicle
up to time t, is given in (4), where Xi

t denotes the state of
the vehicle i at time t.

Ψt = [T 1
t , T

2
t , .., T

m
t ] (3)

T it = [Xi
t , X

i
t−1, ..X

i
0] (4)

The track management system allows the assignment system
to query the state of each obstacle. The system also keeps a
count of the number of times a track was marked unassigned
consecutively. The track is deleted if this number crosses a
particular threshold α and the count is reset to zero if there
is an assignment.

The value of α is selected based on the expected duration
that a sensor fails to detect the vehicle in the existing track
consecutively and also its sampling rate. For example, Lidar
might fail to detect the vehicle temporarily while the ego
vehicle is traversing over a speed bump, causing pitching
motion on the 2D Lidar. Similarly, camera might fail to detect
vehicle when there is a sudden change in lighting condition.
We set α = 15 for Lidar and α = 10 for vision.

D. Lane Coordinate System

To predict vehicle motions and behaviors accurately, the
current dynamic state and trajectory of the other vehicle
should be analyzed in the context of its current road struc-
ture because the same vehicle motion under different road
structure will mean different intentions. In this section, we
introduce the lane coordinate system that enables us to
perform behavior reasoning of the other vehicles.

Fig. 2. The roadway geometry information is extracted from the prior
digital map. The center of the lanes are marked with a series of connected
red line segments. The map shows one section of the one-north region,
which is selected as a testbed for autonomous vehicle (AV) technology and
deployment in Singapore.

The road geometry information is obtained from Sim-
Mobility [18] which is a simulation platform for analyzing
transportation systems using real road networks. The road
and public transportation network within SimMobility are
obtained from NAVTEQ [19]. An overlay of the SimMobil-
itys road geometry information illustrating the lane center is
presented in Fig. 2.

The roadway geometry used in this experiment is de-
scribed based on a piecewise linear model. The center of
the lane is represented by multiple line segments, each line
segment consists of two terminal points in the global map
coordinate system as shown in Fig. 3. The road curvature is
approximated by a connected series of line segments. When
the curvature is large, more lane segments can be used to
reduce the approximation error to a reasonable level. Given
a curve composed of line segments, the Ramer-Douglas-
Peucker algorithm is useful in finding a similar curve with
fewer points by minimizing the maximum distance between
the original curve and the simplified curve.

Fig. 3. The center of the lane is represented as a line segment with
two points in the global map coordinate system. A series of connected
line segments form the road networks which are shown as a yellow arrow
pointing from the starting point to the ending point.

Originally, the lane centers are defined in the Universal
Transverse Mercator (UTM) coordinate system. We trans-
form the lane segments into our global map coordinate
frame using the 2D Helmert-Transformation which require 4
parameters (2 for translation, 1 for rotation and 1 for scaling
factor). The parameters are found using least square fitting
between a set of UTM points collected using onboard GPS
sensor and their corresponding coordinates in the global map
coordinate system using ego vehicle localization system.

Ego vehicle localization is achieved using Monte-Carlo
based method described in [20]. A SICK LMS 151 LIDAR,
which is mounted with 15o tilted down angle, is fused with
wheel odometry and an inertial measurement unit (IMU) to
localize the vehicle within the pre-recorded map.

It is important to perform behavior reasoning within the
lane coordinate system as this provides the road structure and
context to the solution. First, vehicles could only drive within



the road boundary and follow the center of the lane most of
the time. Second, the lane change behavior only happens at
the certain boundary of the road.

Fig. 4. Lane Coordinate System. The diagram explains the setup of three
coordinate systems: global map coordinate system, ego-vehicle body-fixed
coordinate system, and lane coordinate system.

Fig. 4 shows three coordinate systems associated with the
behavior analysis: global map coordinate system (X,Y ), ego
vehicle body-fixed coordinate systems (XB , YB) and lane
coordinate system (slane, nlane).

1) Global Map Coordinate System (X,Y ): The axes of
the global map coordinate system consist of X and
Y axis in metric units. The ego vehicle localization
system provides its position and heading states in this
frame. The lane segments are also defined in this
frame.

2) Ego Vehicle Body-Fixed Coordinate System
(XB , YB): The position of the target vehicle
(x, y) are first detected and measured in the ego
vehicle body-fixed coordinates as the sensors are
mounted on the vehicle body frame. The axes of
the body Cartesian coordinates are composed of the
longitudinal axis (XB) and lateral axis (YB) in metric
units.

3) Lane Coordinate System (slane, nlane): Lane coordi-
nate system is not a fixed coordinate frame but change
according to the position of the target vehicle. The
lane segment with the minimum distance to the target
vehicle will be selected.

The lane segment is defined by a starting point and an
ending point. It is a directional line segment pointing from
the starting point to the ending point which defines the x-
axis of the lane coordinate system, denoted as Slane, whereas
the orthogonal axis is denoted as nlane as shown in Fig. 4.
We will now define three measures in this frame. First, we
have the orthogonal distance between the target vehicle and
the segment, denoted as dlane. Second, we decompose the
vehicle speed v into two orthogonal components, namely
longitudinal speed vlong and lateral speed vlat.

The distance between a point and a line segment is
calculated using the method discussed in [21]. In order

to find the segment with the minimum distance to the
target point, one needs to iterate through all the segments
which is computationally expensive. In order to improve the
computational efficiency, we store in the database for every
segment, a set of segments that it can transit to. For example,
a vehicle can only transit to the segment in front and back
and adjacent left or right if there is any. In this way, once a
target vehicle is initialized with a particular segment, we will
only calculate the distance between the target vehicle with
the current segment and those that it can transit too, which
is a much smaller subset of segments. A transition matrix
with a binary value is used to indicate which segments are
the potential transit candidates given the current segment.

Besides the transition matrix, we have also created an
adjacent lane matrix which is used to indicate the adjacent
lane segment given the current lane segment. One segment
could have up to two adjacent segments, which happen
to the center lane when there are three or more lanes.
However, based on the position of the target vehicle, only one
adjacent lane will be associated at one particular instance, it
is indicated as sadj and nadj . In this frame, we calculate
the minimum distance between the target vehicle and the
adjacent lane, denoted as dadj .

The transformation from the ego vehicle body-fixed co-
ordinate to global map coordinates is performed based on
the ego vehicle position and heading information from the
localization system. Once the target vehicle is transformed
into the global map coordinate, dlane, dadj , vlat and vlong
can be computed.

E. Behavior Analysis

Driving in urban environments include frequent stop-and-
go traffic, queuing at traffic signals, and lane changing. Lane
change is one of the most dangerous maneuvers compared
to others [10], and therefore it is beneficial to be predicted
it in advance. In this section, we categorize the behavior of
a detected vehicle into 3 categories: stopping, lane keeping,
and lane changing.

Fig. 5 illustrates how the dadj and dlane change with time
as the lane change occurs at time t = 0. As the target vehicle
is leaving its current lane, the distance to its initial lane
center dlane increases, and the distance to the adjacent lane
decreases. Lane change occurs at the instance when the target
vehicle’s associated lane is changed, i.e. when it is nearer to
the adjacent lane than to its initial lane. As the target vehicle
merges to the lane, dlane reduces and dadj increases.

To prevent a collision, lane change maneuver of the
surrounding vehicles has to be predicted in advance. An
example trajectory showing where a lane change is predicted
and occurred is shown in Fig. 3. In order to predict lane
change, we calculate the time to lane change TLC ,

TLC =
dadj − dlane

vlat
(5)

by assuming a constant lateral speed model when a vehicle
changes lane. Fig. 5 (bottom) shows that the TLC is reduced
as the vehicle changes lane and it goes to zero when the lane



change occurs. We then map the TLC to the probability of
lane change as:

PLC = e−λ∗TLC (6)

where λ is a positive constant. As shown in Fig. 5, the
probability of the lane change PLC increases from zero to
almost one just before the lane change occurs and back to
zero after that.

Fig. 5. The lane change occurs at time zero. Top figure shows the “magic”
cross created by dadj and dlane which indicates lane change happens at
the crossing point; the bottom figure shows vlat is about constant during
lane change and the value of TLC and PLC .

IV. EXPERIMENTS

Tests were performed in real driving conditions at one-
north, a science and business park in Singapore. To evaluate
the performance of the perception system, the ego vehicle
followed and tracked a leading target vehicle that performed
typical maneuvers such as lane changing, stop-and-go at
intersections, turning at intersections and overtaking another
vehicle. The fusion algorithm was able to detect, track and
classify the behavior of the leading vehicle for the entire
2.3 km route with a total of 16537 numbers of detection
with an average sampling rate of 35Hz. The entire vehicle
states and distance between the target vehicle and the ego
vehicle are shown in Fig. 6. Detection rate of the target
vehicle using Lidar and camera are tabulated in Table I. A
video that highlights the capabilities of our method can be
viewed at https://youtu.be/s_rvaHvTn64. In order
to give a better understanding of the result, we will discuss
3 specific sequences of the target vehicle:

• Target vehicle performed lane change twice on a straight
two-lanes road.

• Target vehicle overtook a parked vehicle.
• Target vehicle made a 90o turn.

A. Test 1

In test 1, we show the perception system was able to
track the target vehicle when it was performing lane changes.
The behavior analysis module was able to predict the lane

Fig. 6. Tracking results of the target vehicle for the entire 2.3 km route
with 16537 numbers of detection in 479 s. The maximum speed of the
target vehicle is 9.4 m/s and the maximum distance from the ego vehicle
is 22.5 m. The behavior is color coded blue for lane keeping, red for lane
changing and green for stopping.

TABLE I
OVERALL DETECTION RATE FOR LIDAR AND VISION

Detection Positive detection Percentage
(count) (count) (%)

Lidar 14332 13846 96.6
Camera 2205 2047 92.8

changing behavior 1.0 s and 0.6 s in advance for the first
and second lane changes respectively. Fig. 11:A shows four
selected images when the target vehicle is making the first
lane change. Lane change behavior is predicted when PLC >
0.4, where 0.4 is a threshold selected to balance between
early detection and false positive. The condition is satisfied
during 148.3-149.3 s and 154.0-154.6 s (see Fig. 7). Fig. 8
shows the trajectory of the target vehicle on the global
map coordinate system with emphasis on the lane change
maneuvers which are color coded in red. The algorithm
classifies the behavior as lane keeping (LK) after the lane
change occurred as the vehicle maintain lateral velocity to
merge to the target lane. The time to lane change TLC back
to the original lane is big and hence the PLC is small.

B. Test 2

In test 2, we show the fusion system was able to track
both the target vehicle and a parked vehicle when the target
vehicle overtaking the parked vehicle. The behavior analysis
module was able to predict the lane changing behavior 0.6 s
in advance. Fig. 11:B shows four selected images when the
target vehicle is overtaking the parked vehicle. The parked
vehicle was detected in the 2nd image although it was
partially occluded by the target vehicle. On the 3rd image,
the target vehicle was crossing the lane divider. Fig. 9 shows

https://youtu.be/s_rvaHvTn64


the trajectory of the target vehicle and the parked vehicle
on the global map coordinate system with emphasis on the
lane change maneuvers which are color coded in red and the
stopping behavior which is color coded in green. A vehicle
is classified as stopping when its speed is smaller than a
minimum speed threshold vmin, which is set to 0.1 m/s in
this experiment.

C. Test 3

In test 3, we show the fusion system was able to track the
target vehicle making a 90o sharp turn. The behavior analysis
module correctly classifies the behavior of the target vehicle
as lane keeping (LK) because given the road context, the
position of the vehicle was far away from the adjacent lane
and the lateral speed in lane coordinate system is relatively
small. This shows the importance of the road context in
behavior reasoning. Fig. 11:C shows four selected images
when the target vehicle is making the sharp turn. The vision
system was able to detect the vehicle consistently although
the vehicle was almost out of the frame in image C3. Fig. 10
shows the trajectory of the target vehicle on the global
map coordinate system. The fusion system did not receive
measurement update of the target vehicle from Lidar for a
period of time. This is due to the pitching motion of the
ego vehicle causing the target vehicle out of the 2D plane
of Lidar scanning. However, the vision system was able to
detect the vehicle consistently and thus the fusion system
was able to maintain the track of the vehicle.

Fig. 7. Probability of lane change versus time in test 1.

V. CONCLUSIONS

The paper presents a sensor fusion methodology that
combines vision and Lidar to robustly detect and track
vehicles in the complex urban scenarios. We apply deep
learning techniques to detect vehicles from camera image and
improve its position estimate by fusing Lidar information.
State estimation, data association, and track management are
performed in global map coordinate system by considering
the characteristics of each sensor. This approach shows its
effectiveness in tracking a target vehicle consistently for a
2.3 km route. We have also performed behavior analysis
of detected vehicles using road context. By examining the
vehicle states in the lane coordinate system, we are able to

Fig. 8. Trajectory of target vehicle performed Lane Changing (LC) twice
in a straight two-lanes road.

Fig. 9. Trajectory of target vehicle overtaking a parked vehicle.

Fig. 10. Trajectory of target vehicle making a 90o sharp turn.

reliably classify the behavior of the tracked vehicles into
stopping, lane keeping and lane changing. This brings us one
step closer towards reliable and safe autonomous driving in
urban environments.
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