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Abstract. This paper addresses intention and trajectory prediction of
exo-vehicles in an urban driving environment. Urban environments pose
challenging scenarios for self-driving cars, specifically pertaining to traffic
light detection, negotiating paths at the intersections and sometimes even
overtaking illegally parked cars in narrow streets. This complex task
of autonomously driving while considering anomalous situations make
urban driving conditions unique when compared to highway driving. In
order to overcome these challenges, we propose to use road contextual
information to predict driving intentions and trajectories of surrounding
vehicles. The intention prediction is obtained using a recurrent neural
network and the trajectory is predicted using a polynomial model fitting
of the past lateral and longitudinal components of the vehicle poses and
road contextual information. The integrated process of intention and
trajectory prediction is performed in real-time by deploying and testing
on a self-driving car in a real urban environment.

1 Introduction

Urban driving scenarios involve unique challenges when compared to highway
driving due to complexity of the environment and corresponding road-rules.
Given the vast range of road-rules that may or may not be applicable to anoma-
lous urban driving situations, it becomes crucial to use road contextual infor-
mation for autonomous and intelligent driving. An example of the anomalous
situation is illegally parked car in a single lane on a bi-directional street which
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requires the ego vehicle to overtake from the opposite side of the road. In such
scenarios, using road contextual information such as number and direction of
lanes, lane width and distance to the upcoming intersection, can help in human-
like decision making. Hence, we propose to use contextual information for inten-
tion and trajectory prediction of surrounding vehicles to plan a path for the
ego-vehicle.

Our system comprises of five main modules as illustrated in Fig. 1. Specifi-
cally, these include:

• Perception module comprising of vision-based obstacle detection and classi-
fication system along with LiDAR-based point cloud clustering for identifying
the road region.

• Sensor fusion and tracking module performs data association between the
vision and LiDAR systems and tracks the vehicles in the global map frame.

• Behavior analysis and prediction module converts the vehicle tracks from
map frame to lane coordinate system and uses road contextual information
for behavior prediction.

• Decision making and planning module uses the predicted behavior of exo-
vehicles for decision making of the ego-vehicle. This decision is then translated
into a path using the planner.

• Speed and steering control module is a low-level controller used to execute
the planned path.

Fig. 1. System overview comprising of five modules: perception, sensor fusion and
tracking, behavior analysis and prediction, decision making and planning, speed and
steering control.

In our initial work [1], we focused on the perception, sensor fusion and track-
ing modules along with a naive behavior analysis and prediction method. The
behavior prediction system was rule-based and could only predict binary out-
come of changing or keeping lanes for a single leading vehicle.

In this paper, we focus on predicting intentions as well as trajectories of
multiple exo-vehicles. Specifically, the predicted intentions help us distinguish
between left and right lane changes for surrounding vehicles based on the learned
driving behaviors. The driving intent is predicted using a recurrent neural net-
work (RNN) instead of a rule-based method since, RNNs can capture subtle
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urban driving behaviors which otherwise cannot be independently represented
by road-rules. On the contrary, RNNs are not very promising for trajectory pre-
diction as they require a huge range of data to model various driving patterns.
So, we predict the trajectory of the target vehicle based on its short-term tracked
motion, the predicted intention and the road-contextual information. This allows
us to predict trajectories without explicitly learning a range of driving patterns
a-priori. Hence, our proposed context-aware prediction method can provide an
early intention and trajectory prediction with reasonably acceptable time hori-
zon in the future.

2 Related Work

There is an extensive amount of literature related to intention and trajectory
prediction for motion planning of ego-vehicle [2]. Specifically, in [3] the authors
propose a method adapted based on structural RNN to predict lane change
intention of exo-vehicles. Unlike our approach, their method is specifically appli-
cable for highway driving and does not predict the trajectories of the vehicles.
Another method based on RNN is proposed in [4] for trajectory prediction, also
for highway driving. Though the reported results are encouraging, this method
requires a large amount of labeled data to model a wide-range of possible trajec-
tories. Ding et al. [5] also propose a neural network based model for trajectory
prediction. They address the data dependency issue by using a simulator and
recording implicit driving behaviors of human subjects while they controlled the
simulated vehicles. In our work, we use a neural network as well but to only pre-
dict the intention of the surrounding vehicles. The trajectory is predicted based
on past vehicle states. We also use road contextual information which reduces
the need of huge amount of data for learning intentions.

A real-time trajectory planning approach is also proposed by Li et al. in [6].
They present a hierarchical motion planning framework comprising of a high-
level behavior planner to generate a coarse reference path and a low-level tra-
jectory planner providing locally feasible candidate paths. The candidate paths
are then evaluated using an objective function to select the optimal collision-
free, smooth and dynamically feasible path. Their proposed approach, unlike
our method, does not account for the intentions of the surrounding vehicles and
instead passively plans paths in the available collision-free space. In [7,8] the
human driving intentions and its uncertainties are taken into account for motion
planning of the ego-vehicle. However, this work particularly considers the deci-
sion making task of navigating at the intersections which does not require any
trajectory prediction.

In this paper, we aim to combine intention and trajectory prediction methods
for driving behavior analysis in an urban environment. Similar to our goal, Gal-
ceran et al. [9] propose an integrated approach of inference and decision making
for autonomous driving. They use hand engineered driving behaviors for model
fitting trajectories and detecting change point for most likely behavior predic-
tion. In contrast, our proposed approach does not use predefined trajectories
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but instead uses RNN for intention prediction and an online polynomial model
fitting algorithm for trajectory prediction which is motivated by [10].

3 System Overview

The goal of this paper is to provide real-time prediction of intentions and tra-
jectories of surrounding vehicles such that we can accordingly plan path for the
ego-vehicle. Given the individual trajectory of each vehicle i, from the sensor
fusion and tracking module, for recent time steps τi = t1, ..., tn, we use it as
input to intention and trajectory prediction algorithms. The intention predic-
tion is obtained using a RNN. Specifically, we propose to use a RNN comprising
of a single long-short term memory (LSTM) unit to represent and predict the
driving intention Ii of the target vehicle for one-time step in the future. The
LSTM outputs a probability distribution over the set of intentions which in our
case is lane keeping, right lane change and left lane change. The trajectory of
the target vehicle is then predicted using a polynomial curve which is obtained
using the vehicle’s initial and expected final states. The expected final state is
inferred based on the intention predicted by LSTM.

4 Technical Approach

In order to validate our proposed approach we train and test our system based
on the data collected from the ego-vehicle. This allows us to have access to the
ground truth information which is independent of any perception errors. Our
proposed approach has much less dependency on the range of training data as
we enhance it with the road contextual information.

4.1 Road Context Information

We obtained the road contextual information from OpenStreetMap [11] and the
lane center information was later modified according to our autonomous vehicle
dynamics. An overlay of the road geometry information illustrating the lane
center and direction is presented in Fig. 2 (left) along with an instance of ego-
vehicle’s path while it is changing lanes (right). The lane change path indicated
in red is referenced against the lane center marking represented in yellow.

4.2 Intention Prediction

We use urban driving data collected from our ego-vehicle for training and testing
the intention prediction module of our system. The data comprises of vehicle’s
state and road contextual information which are the input features for the LSTM
network. Specifically, these features include:
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Fig. 2. The digital map overlaid with the lane center in yellow (left). A close-up of the
digital map illustrating lane-change instance in red (right).

• δx: Change in lateral pose compared to previous time step
• δy: Change in longitudinal pose compared to previous time step
• ll: If left lane exists (Boolean 0/1)
• rl: If right lane exists (Boolean 0/1)
• dcenter: Distance from the center of the lane. This value ranges from −1.5 m

to 1.5 m for an average lane width of 3 m.

The LSTM network is trained on sample sequences of 1 second comprising of 4
samples. The network outputs predictions in real-time for 1 time step i.e., 0.25 s
in future. The LSTM output is converted into a probability distribution over
three classes: lane keeping, right lane change and left lane change.

4.3 Trajectory Prediction

Once the intention of the vehicle is known, the next critical step is to predict
its trajectory in order to plan path for the ego-vehicle. The trajectory that a
vehicle will take in a particular instant is stochastic in nature. First of all, dif-
ferent drivers might have different driving behaviors. For example, some drivers
are more aggressive while others are more conservative. This affects how fast
the lane change is performed and how the vehicle slows down when approach-
ing an intersection. Second, even for the same driver, those behaviors might
change depending on the situation of the road. However, given the road struc-
ture, intention of the driver and the past poses of the target vehicle, it is possible
to reasonably predict its most likely trajectory.

Given the road contextual information, we know the adjacent lanes that
the exo-vehicle can potentially transit to and thus we can generate possible
hypotheses accordingly. For example, if the exo-vehicle travels on the left lane of a
two lane road, it either continues on its current lane or makes a right lane change.
In other words, left lane change is not possible and there are only two hypotheses
(lane keeping and right lane change). For each hypothesis, wewill model the
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lateral component by a 5th-order polynomial and longitudinal component by a
4th-order polynomial as suggested in [10]. The polynomial is solved by providing
the initial and final states of the target vehicle. The lateral displacement d(t) is
of the form:

d(t) = c5t
5 + c4t

4 + c3t
3 + c2t

2 + c1t + c0 (1)

where ci,i={0,1,2,3,4,5} are coefficients. Given a start time, t0 = 0, a predefined
end time t1 = 5, initial and final states, the coefficients are solved using (2).

⎡
⎢⎢⎢⎢⎢⎢⎣

t50 t40 t30 t20 t0 1
t51 t41 t31 t21 t1 1
5t40 4t30 3t20 2t0 1 0
5t41 4t31 3t21 2t1 1 0
20t30 12t20 6t0 2 0 0
20t31 12t21 6t1 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

c5
c4
c3
c2
c1
c0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d0
d1
ḋ0
ḋ1
d̈0
d̈1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

The initial state is used to determine d0, ḋ0 and d̈0. The final displacement,
d1 is chosen depending upon the hypothesis whereas, vehicle’s final lateral speed
and acceleration ḋ1 and d̈1 are both zero. The longitudinal displacement s(t) is
of the form:

s(t) = c4t
4 + c3t

3 + c2t
2 + c1t + c0 (3)

Similar to (1), the coefficients ci are solved using (4), given start time, t0 = 0, a
predefined end time t1 = 5, initial and final states.

⎡
⎢⎢⎢⎢⎣

t40 t30 t20 t0 1
4t30 3t20 2t0 1 0
4t31 3t21 2t1 1 0
12t20 6t0 2 0 0
12t21 6t1 2 0 0

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

c4
c3
c2
c1
c0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

s0
ṡ0
ṡ1
s̈0
s̈1

⎤
⎥⎥⎥⎥⎦

(4)

The initial state is used to determine s0, ṡ0 and s̈0. The final displacement,
s1 is unknown and is not required in the equation. The vehicle’s longitudinal
speed and acceleration are chosen to be ṡ1 = ṡ0+ s̈0 ∗ t and s̈1 = s̈0, respectively.

5 Experimental Results

We train and test our prediction algorithms using our self-driving car in real
urban environment. Specifically, we use the circuit represented in Fig. 2 which
is situated in One-North region of Singapore city. The training set was collected
for ≈8 km and tested for 2.3 km over the same path. The perception, sensor
fusion and tracking modules are used from our previous work [1]. In this section,
we exclusively discuss the intention and trajectory prediction results for the
ego-vehicle from the behavior analysis and prediction module of our system as
illustrated in Fig. 1. The test on ego-vehicle was specifically chosen to validate
our proposed prediction algorithms without any influence of the perception and
ground-truth data labeling errors.
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5.1 Intention Prediction

We compare intention prediction results from LSTM with our rule-based method
from [1]. For the rule-based method, we considered the distance to lane center
and lateral velocity of the vehicle to decide on the probability of lane change. It is
important to note that in our previous work we did not distinguish between left
and right lane changes. However, LSTM based intention prediction can uniquely
classify the two lane changes, but we combined their probabilities for a fair
comparison to the rule-based method. We compare and report the precision-
recall values for the two methods in Table 1. The threshold values for the two
methods were independently selected based on the ROC curve shown in Fig. 3.

Table 1. Comparison of rule-based method with our proposed LSTM based approach
for intent prediction.

Class Precision Recall

LSTM Lane keep 0.97 0.80

Lane change 0.34 0.80

Rule-based Lane keep 0.93 0.75

Lane change 0.24 0.57

It is evident from Table 1, that LSTM based method provides significantly
better precision recall rate. In addition to these performance metrics, we also
calculated the average predicted time to lane change (TTLC) for the test data.
The TTLC is calculated as the time difference between when a prediction is
made and when the vehicle actually crossed the dividing line between the two
lanes. The average TTLC provided by rule-based method is 3.25 s and using
LSTM it is 3.69 s (≈14% better).

Fig. 3. ROC curve to compare rule-based method and LSTM.
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The intention prediction of the ego-vehicle using LSTM for three classes
(lane keeping, right lane change and left lane change) is presented in Fig. 4.
The ground-truth information is represented in Fig. 4a which is obtained from
the indicator values of the ego-vehicle. The corresponding predicted values from
LSTM are illustrated in Fig. 4b.

(a) Ground truth (b) Predicted intention

Fig. 4. Intention prediction of ego-vehicle using LSTM.

Note that there are some delays in prediction due to the fact that the indi-
cator signals are given even before the intended maneuver is started. We also
observed that slight off-centering of the vehicle from the lane center often triggers
a lane change prediction, resulting in a false positive. This particular outcome
can be tuned by varying the threshold for the probability of lane change based
on the ROC from Fig. 3. Similar results were observed for exo-vehicle and an
instance is presented at the following link: https://youtu.be/1GZMFLk5bk4.

5.2 Trajectory Prediction

An example of the ego-vehicle performing lane change on a two lane road is shown
in Fig. 5. The road boundaries and the road separator are indicated using grey
solid and dashed line, respectively. The positions marked as stars are the known
vehicle positions in the last 5 sampling times. The goal is to predict the likely
trajectories from the last sampling point. Given the road structure, we know
that the vehicle could either keep lane or lane change. These two trajectories
are indicated as dotted purple line and solid orange line for lane keeping and
lane changing, respectively. The duration of prediction is 5 s into the future
at sampling interval of 0.25 s. A time varying instance of the predicted vehicle
trajectories for the two intents is presented at the following link: https://youtu.
be/9-8kmSBtMEo.

https://youtu.be/1GZMFLk5bk4
https://youtu.be/9-8kmSBtMEo
https://youtu.be/9-8kmSBtMEo
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Fig. 5. Two hypothesis trajectories: lane keep and lane change for a vehicle traveling
on a two lanes road.

Figure 6 shows the accuracy of the trajectory prediction algorithm for three
different look-ahead times: 0.25 s, 1.0 s and 2.0 s. It is important to explain what
it means by look-ahead time. If the look-ahead time is 1.0s, for example, we
are trying to predict the vehicle’s position at t + 1.0 s given only the vehicle’s
position until time t. Since there are two potential trajectories to choose from as
shown in Fig. 5, we choose the trajectory based on the driver’s intention given
by the LSTM network.

For 0.25 s look-ahead, the trajectory prediction is perfectly in-line with the
predicted path, indicating that the intention of the driver is inferred correctly
for this short look-ahead time. The motion model used to generate the lane
keeping and lane changing hypotheses, also managed to predict the position of
the vehicle accurately, as vehicles generally maintain their momentum at this
short interval.

Similarly for 1.0 s look-ahead, the LSTM network is able to accurately predict
the instance of lane change intention of the driver. However, there are some
position errors while predicting the trajectory as the motion model needs to
predict longer into the future. Lastly, for 2.0 s look ahead, there is a noticeable
error in trajectory prediction at the start of the lane change maneuver which is
caused due to the delay in predicting the lane change intention. In addition to
that, there are errors due to the motion model as there is more uncertainty now
to predict position 2.0 s into the future.
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Fig. 6. Predicted trajectory for different look ahead times: 0.25 s, 1 s and 2 s. The thick
grey line shows the actual path.

6 Conclusion

The results from our intention and trajectory prediction algorithms seem promis-
ing without requiring big datasets that are generally needed by the existing
deep learning prediction methods. Instead, we use road contextual information
which helps us to significantly improve our prediction outcome. We validated
our proposed LSTM based intention prediction method which outperforms the
rule-based method without explicitly accounting for anomalous scenarios. Our
trajectory prediction method has proven to provide real-time results with very
low error rates. Lastly, the integrated output of our intention and trajectory
prediction algorithms is shown to be applicable for decision making and path
planning by the autonomous vehicles in urban driving environments [12].
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2. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion
planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell.
Veh. 1(1), 33–55 (2016)

3. Patel, S., Griffin, B., Kusano, K., Corso, J.J.: Predicting future lane changes
of other highway vehicles using RNN-based deep models. arXiv preprint
arXiv:1801.04340 (2018)
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